Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (8): 1613-1619    DOI: 10.3785/j.issn.1008-973X.2020.08.021
    
Traffic accident quantity prediction model based on dual-scale long short-term memory network
Wen-shu LI(),Tao-tao ZOU,Hong-yan WANG,Hai HUANG
Machine Learning and Intelligent Systems Team, Zhejiang University of Science and Technology, Hangzhou 310018, China
Download: HTML     PDF(974KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A novel traffic accident prediction model was proposed, in order to reduce the occurrence of traffic accidents and property losses. The dual-scale decomposition equations are utilized to decompose the original traffic accident time series into a number of sub-layers, and the long short-term memory (LSTM) network is adopted to complete the forecasting of the low-frequency sub-layer. The double scale reconstruction equations are adopted to complete the predicted value reconstruction of the low-frequency sub-layer. LSTM, gate recurrent unit (GRU), stacked autoencoders (SAEs) and dual-scale LSTM (DS-LSTM) prediciton models were constructed, and the four models were used to predict the two data sets. Results show that compared with other models, the proposed model is robust and more effective in predicting the traffic accident time series. Compared with the original LSTM model, the prediction accuracy of model DS_LSTM is improved by 6% and 28% respectively in the two data sets. Testing on two different databases (Leeds and UK) shows that the proposed model has better generalization performance than the other models involved.



Key wordstraffic accident      prediction model      long short-term memory network      dual-scale decomposition      dual-scale reconstruction     
Received: 23 June 2019      Published: 28 August 2020
CLC:  TP 181  
Cite this article:

Wen-shu LI,Tao-tao ZOU,Hong-yan WANG,Hai HUANG. Traffic accident quantity prediction model based on dual-scale long short-term memory network. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1613-1619.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.08.021     OR     http://www.zjujournals.com/eng/Y2020/V54/I8/1613


基于双尺度长短期记忆网络的交通事故量预测模型

为了降低交通事故的发生、减少财产损失,建立新型交通事故量预测模型. 该模型利用双尺度分解方程将原始交通事故时间序列分解为多个子层,并利用长短期记忆(LSTM)网络对得到的低频子层进行预测;利用双尺度重构方程将低频子层的预测结果进行重构. 分别构建LSTM预测模型、门控循环单元(GRU)预测模型、自编码(SAEs)预测模型和双尺度长短期记忆网络(DS-LSTM)预测模型,利用这4个预测模型对2个数据集进行预测. 结果表明,本研究模型相较其他模型能够有效预测交通事故时间序列,且具有较强的鲁棒性. 对于2个数据集,相较于原始的LSTM模型,DS_LSTM预测模型预测准确度分别提高6%、28%;对2个不同数据库(利兹和UK)的测试表明本研究模型具有较好的泛化性能.


关键词: 交通事故,  预测模型,  长短期记忆网络,  双尺度分解,  双尺度重构 
Fig.1 Flow chart of traffic accident prediction model
Fig.2 LSTM memory block structure
epochs ACC/%
利兹数据集 UK数据集
400 74.8891 84.8406
500 79.3250 85.2503
600 79.9246 85.9217
700 81.5287 88.1876
800 82.0915 88.0292
900 83.2079 88.0172
1000 82.2952 85.4329
Tab.1 Accuracy of DS-LSTM model under different epochs
Fig.3 Accident number with epochs of 900 (Leeds database)
Fig.4 Accident number with epochs of 700 (UK database)
模型 UK,epochs=700 Leeds,epochs=900
MAE MSE RMSE ACC/% MAE MSE RMSE ACC/%
LSTM 0.5135 0.6161 0.7849 60.8588 0.4288 0.5811 0.7622 76.7608
GRU 0.6531 1.2837 1.1330 50.2231 1.0072 2.2285 1.4928 45.4190
SAEs 0.5872 0.8195 0.9052 55.2421 0.8611 1.4739 1.2140 53.3366
DS-LSTM 0.1900 0.0855 0.2924 88.1876 0.3227 0.2040 0.4517 83.2079
Tab.2 Model characteristics under different data sets
[1]   ZIYAB A H, AKHTAR S Incidence and trend of road traffic injuries and related deaths in Kuwait: 2000–2009[J]. Injury, 2012, 43 (12): 2018- 2022
doi: 10.1016/j.injury.2011.09.023
[2]   YANNIS G, DRAGOMANOVITS A, LAIOU A, et al Road traffic accident prediction modelling: a literature review[J]. Proceedings of the Institution of Civil Engineers, 2017, 170 (5): 245- 254
[3]   ZHANG J, LIU X M, HE Y L, et al Application of ARIMA model in forecasting traffic accidents[J]. Journal of Beijing University of Technology, 2007, 33 (12): 1295- 1299
[4]   BARBA L, RODRIGUEZ N, MONTT C Smoothing strategies combined with ARIMA and neural networks to improve the forecasting of traffic accidents[J]. The Scientific World Journal, 2014, 1- 12
[5]   张艳艳, 刘晓佳, 熊子龙, 等 基于 ARIMA 模型的水上交通事故预测[J]. 中国水运: 下半月, 2017, (2): 51- 54
ZHANG Yan-yan, LIU Xiao-jia, XIONG Zi-long, et al Waterborne traffic accident prediction based on ARIMA model[J]. China Water Transport: the Second Half of the Month, 2017, (2): 51- 54
[6]   BECKER U, MANZ H Grey systems theory time series prediction applied to road traffic safety in Germany[J]. IFAC-PapersOnLine, 2016, 49 (3): 231- 236
doi: 10.1016/j.ifacol.2016.07.039
[7]   王星, 刘小勇 基于灰色马尔科夫模型的交通事故预测研究[J]. 交通科技与经济, 2017, 19 (4): 9- 13
WANG Xing, LIU Xiao-yong Study on traffic accident prediction based on grey Markov model[J]. Transportation Science and Technology, 2017, 19 (4): 9- 13
[8]   邸韡, 巴德瓦杰, 魏佳宁. 深度学习基础教程[M]. 北京: 机械工业出版社, 2018.
[9]   WANG J, GU Q, WU J, et al. Traffic speed prediction and congestion source exploration: a deep learning method [C]// IEEE 16th International Conference on Data Mining. Barcelona: IEEE, 2016: 499-508.
[10]   CONTRERAS E, TORRES-TREVINO L, TORRES F. Prediction of car accidents using a maximum sensitivity neural network [C]// 2018 EAI International Conference on Smart Technology. Monterrey: Springer, 2018: 86-95.
[11]   ZANG D, FANG Y, WANG D, et al. Long term traffic flow prediction using residual net and deconvolutional neural network [C]// Chinese Conference on Pattern Recognition and Computer Vision (PRCV). Guangzhou: Springer, 2018: 62-74.
[12]   GARCIADE SOTO B, BUMBACHER A, DEUBLEIN M, et al Predicting road traffic accidents using artificial neural network models[J]. Infrastructure Asset Management, 2018, 5 (4): 132- 144
doi: 10.1680/jinam.17.00028
[13]   ZHANG C, ZHANG H, YUAN D, et al Citywide cellular traffic prediction based on densely connected convolutional neural networks[J]. IEEE Communications Letters, 2018, 22 (8): 1656- 1659
doi: 10.1109/LCOMM.2018.2841832
[14]   PAMULA T Impact of data loss for prediction of traffic flow on an urban road using neural networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 20 (3): 1000- 1009
[15]   陈海龙, 彭伟 改进 BP 神经网络在交通事故预测中的研究[J]. 华东师范大学学报: 自然科学版, 2017, 2: 61- 68
CHEN Hai-long, PENG Wei Study on improved BP neural network in traffic accident prediction[J]. Journal of East China Normal University: Natural Science, 2017, 2: 61- 68
[16]   ZHAO Z, CHEN W, WU X, et al LSTM network: a deep learning approach for short-term traffic forecast[J]. IET Intelligent Transport Systems, 2017, 11 (2): 68- 75
doi: 10.1049/iet-its.2016.0208
[17]   CORTEZ B, CARRERA B, KIM Y J, et al An architecture for emergency event prediction using LSTM recurrent neural networks[J]. Expert Systems with Applications, 2018, 97: 315- 324
doi: 10.1016/j.eswa.2017.12.037
[18]   ALKHEDER S, TAAMNEH M, TAAMNEH S Severity prediction of traffic accident using an artificial neural network[J]. Journal of Forecasting, 2017, 36 (1): 100- 108
doi: 10.1002/for.2425
[19]   BEYLKIN G, COIFMAN R, ROKHLIN V Fast wavelet transforms and numerical algorithms I[J]. Communications on Pure and Applied Mathematics, 1991, 44 (2): 141- 183
doi: 10.1002/cpa.3160440202
[20]   MALLAT S G A theory for multiresolution signal decomposition: the wavelet representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, (7): 674- 693
[21]   彭玉华. 小波变换与工程应用[M]. 北京: 科学出版社, 1999.
[22]   SHI X J, CHEN Z, WANG H, et al. Convolutional LSTM network: a machine learning approach for precipitation nowcasting [C]// Advances in Neural Information Processing Systems. 2015: 802-810.
[23]   RAHMANI B Early model of traffic sign reminder based on neural network[J]. Telkomnika, 2012, 10 (4): 749
doi: 10.12928/telkomnika.v10i4.864
[24]   CHAI T, DRAXLER R R Root mean square error (RMSE) or mean absolute error (MAE)? : arguments against avoiding RMSE in the literature[J]. Geoscientific Model Development, 2014, 7 (3): 1247- 1250
doi: 10.5194/gmd-7-1247-2014
[25]   FU R, ZHANG Z, LI L. Using LSTM and GRU neural network methods for traffic flow prediction [C]// 2016 31st Youth Academic Annual Conference of Chinese Association of Automation. Wuhan: IEEE, 2016: 324-328.
[26]   ZHANG D, KABUKA M R Combining weather condition data to predict traffic flow: a GRU-based deep learning approach[J]. IET Intelligent Transport Systems, 2018, 12 (7): 578- 585
doi: 10.1049/iet-its.2017.0313
[1] Wei-qi CHEN,Jing-chang WANG,Ling CHEN,Yong-qin YANG,Yong WU. Prediction model of multi-factor aware mobile terminal replacement based on deep neural network[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 109-115.
[2] Jin-hai ZHOU,Yi-chuan WANG,Jing-ping TONG,Shi-yi ZHOU,Xiang-fei WU. Ultra wide band radar gait recognition based on slow-time segmentation[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 283-290.
[3] Hua HUANG,Wen-qiang DENG,Yuan LI,Run-lan GUO. Mass matching design of machine tool parts based on spatial dynamics optimization[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2009-2017.
[4] Ming-kun FENG,Xiang SHI. Image quality assessment with deep pooling of visual feature[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 512-521.
[5] WANG Liang, YU Zhi-wen, GUO Bin. Moving trajectory prediction model based on double layer multi-granularity knowledge discovery[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(4): 669-674.
[6] JI Xue-bin, WANG Hui, SONG Chun-yue. Traffic flow modeling and safety analysis in hydropower construction based on cellular automata[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(10): 2005-2011.
[7] HUANG Ke, ZHOU Qi-cai, ZHAO Jiong, Xiong Xiao-lei. State prediction on hydraulic system of shield[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(8): 1437-1443.
[8] HU Xing-xing,QIU Le-miao, ZHANG Shu-you, ZHANG Hui. Application of a hybrid RSM for springback predictive control in roll forming[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(11): 2010-2019.
[9] ZHANG Zhi-gang, ZHOU Xiao-jun, LI Yong-jun, SHEN Lu, YANG Fu-chun. Drag torque prediction model of wet multi-disk shifting clutch[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(4): 708-713.
[10] SHANG Xiu-Qin, LEI Jian-Gang, SUN You-Xian. Genetic programming based twoterm prediction model of iron ore burning through point[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(7): 1266-1269.