[1] SIEGEL R L, MILLER K D, FEDEWA S A, et al. Colorectal cancer statistics, 2017[J]. CA:a Cancer Journal for Clinicians, 2017, 67(3):177-193.
[2] CHEN W, ZHENG R, BAADE P D, et al. Cancer statistics in China, 2015[J]. CA:a Cancer Journal for Clinicians, 2016, 66(2):115-132.
[3] HORNBROOK M C, GOSHEN R, CHOMAN E, et al. Early colorectal cancer detected by machine learning model using gender, age, and complete blood count data[J]. Digestive Diseases and Sciences, 2017, 62(10):2719-2727.
[4] MONTAZERI M, MONTAZERI M, MONTAZERI M, et al. Machine learning models in breast cancer survival prediction[J]. Technology and Health Care Official Journal of the European Society for Engineering and Medicine, 2015, 24(1):31-42.
[5] THONGKAM J, XU G, ZHANG Y. AdaBoost algorithm with random forests for predicting breast cancer survivability[C]//IEEE International Joint Conference on Neural Networks. Hong Kong:IEEE, 2008:3062-3069.
[6] YAO D, YANG J, ZHAN X. Predicting breast cancer survivability using random forest and multivariate adaptive regression splines[C]//International Conference on Electronic and Mechanical Engineering and Information Technology. Harbin:IEEE, 2011:2204-2207.
[7] HUANG S H, LOH J K, TSAI J T, et al. Predictive model for 5-year mortality after breast cancer surgery in Taiwan residents[J]. Chinese Journal of Cancer, 2017, 36(4):23.
[8] SVETNIK V, LIAW A, TONG C, et al. Random forest:a classification and regression tool for compound classification and QSAR modeling[J]. Journal of Chemical Information and Computer Sciences, 2003, 43(6):1947.
[9] KUNIZAKI M, SAWAI T, TAKESHITA H, et al. Clinical value of serum p53 antibody in the diagnosis and prognosis of colorectal cancer[J]. Anticancer Research, 2016, 36(8):4171-4175.
[10] WANG P, LIANG J, WANG Z, et al. The prognostic value of p53 positive in colorectal cancer:a retrospective cohort study[J]. Tumour Biology, 2017, 39(5):1010428317703651.
[11] KOUROU K, EXARCHOS T P, EXARCHOS K P, et al. Machine learning applications in cancer prognosis and prediction[J]. Computational and Structural Biotechnology Journal, 2015, 13(C):8-17.
[12] JAIN A K, CHANDRASEKARAN B. 39 dimensionality and sample size considerations in pattern recognition practice[J]. Handbook of Statistics, 1982, 2(39):835-855.
[13] FRANCO G D. Principal component analysis and factor analysis[J]. Principal Component Analysis, 2002:150-166.
[14] KLEMA V, LAUB A J. The singular value decomposition:Its computation and some applications[J]. IEEE Transactions on Automatic Control, 1980, 25(2):164-176.
[15] 姜园, 张朝阳, 仇佩亮, 周东方. 用于数据挖掘的聚类算法[J]. 电子与信息学报, 2005(4):655-662 JIANG Yuan, ZHANG Chao-yang, QIU Pei-liang, et al. Clustering algorithm for data mining[J]. Journal of Electronics and Information Technology, 2005(4):655-662
[16] BEZDEK J C, EHRLICH R, FULL W. FCM:The fuzzy C-means clustering algorithm[J]. Computers and Geosciences, 1984, 10(2):191-203.
[17] PAL N R, BEZDEK J C. On cluster validity for the fuzzy C-means model[J]. IEEE Transactions on Fuzzy Systems, 2002, 3(3):370-379.
[18] PITTS W. A logical calculus of the ideas immanent in nervous activity[J]. Bulletin of Mathematical Biology, 1943, 5(4):115-133.
[19] 王彦东, 吴佩. 肿瘤的脉管内侵犯与转移[J]. 国际外科学杂志, 2007, 34(3):209-212 WANG Yan-dong, WU Pei. Intravascular invasion and metastasis of tumor[J]. International Journal of Surgery, 2007, 34(3):209-212
[20] KHORANA A A, RYAN C K, COX C, et al. Vascular endothelial growth factor, CD68, and epidermal growth factor receptor expression and survival in patients with stage Ⅱ and stage Ⅲ colon carcinoma:a role for the host response in prognosis[J]. Cancer, 2003, 97(4):960-968.
[21] CHAN J A, MEYERHARDT J A, NIEDZWIECKI D, et al. Association of family history with cancer recurrence and survival among patients with stage Ⅲ colon cancer[J]. Jama the Journal of the American Medical Association, 2008, 299(21):2515-2523.
[22] 宫媛, 吴本俨, 苏斌斌. 272例直肠癌患者的预后影响因素分析[J]. 解放军医学杂志, 2008, 33(5):608-610 GONG Yuan, WU Ben-yan. Analysis of prognostic factors in 272 patients with rectal cancer[J]. Medical Journal of Chinese People's Liberation Army, 2008, 33(5):608-610
[23] NAKAMURA T, MITOMi H, KANAZAWA H, et al. Tumor budding as an index to identify high-risk patients with stage Ⅱ colon cancer[J]. Diseases of the Colon and Rectum, 2008, 51(5):568-572.
[24] WULFKUHLE J D, LIOTTA L A, PETRICOIN E F. Proteomic applications for the early detection of cancer[J]. Nature Reviews Cancer, 2003, 3(4):267.
[25] MARCUS G. Deep Learning:a critical appraisal[EB/OL]. (2018-01-02)[2018-04-18]. https://arxiv.org/abs/1801.00631. |