Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (1): 109-115    DOI: 10.3785/j.issn.1008-973X.2021.01.013
    
Prediction model of multi-factor aware mobile terminal replacement based on deep neural network
Wei-qi CHEN1(),Jing-chang WANG2,Ling CHEN1,*(),Yong-qin YANG3,Yong WU2
1. College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
2. Zhejiang Hongcheng Computer Systems Limited Company, Hangzhou 310009, China
3. Zhejiang Branch of China Telecom Limited Company, Hangzhou 310040, China
Download: HTML     PDF(889KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A multi-factor aware mobile terminal replacement prediction model based on deep neural networks was proposed to address the problem that traditional mobile terminal replacement prediction models based on feature engineering rely on the domain knowledge and cannot sufficiently use user’s call details and data traffic details. Long short-term memory (LSTM) networks were utilized to extract the sequence characteristics of user’s call and data traffic behaviors. Then a fully connected neural network was utilized to fuse user’s natural attributes, sequence characteristics, and historical terminal replacement information for prediction. The experimental results show that the proposed model can consider multiple factors affecting terminal replacement and sufficiently exploit the sequence characteristics of user’s call details and data traffic details. The precision was increased by 34.3% compared with traditional methods when recall was set to 0.135.



Key wordsmobile terminal replacement prediction      multi-factor aware      deep neural network      long short-term memory network      fully connected neural network     
Received: 18 December 2019      Published: 05 January 2021
CLC:  TP 491  
Corresponding Authors: Ling CHEN     E-mail: vc12301@gmail.com;lingchen@cs.zju.edu.cn
Cite this article:

Wei-qi CHEN,Jing-chang WANG,Ling CHEN,Yong-qin YANG,Yong WU. Prediction model of multi-factor aware mobile terminal replacement based on deep neural network. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 109-115.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.01.013     OR     http://www.zjujournals.com/eng/Y2021/V55/I1/109


基于深度神经网络的多因素感知终端换机预测模型

针对基于特征工程的传统终端换机预测模型依赖于领域知识且无法充分利用用户通话、流量使用等序列数据的问题,提出基于深度神经网络的多因素融合终端换机预测模型. 该模型使用长短时记忆网络(LSTM)提取用户通话、流量使用行为序列特征,使用全连接网络融合用户自然属性、行为序列特征和历史换机信息,预测用户是否换机. 实验表明,基于深度神经网络的多因素融合终端换机预测模型能够考虑影响用户换机的多种因素,充分挖掘用户通话、流量使用行为序列特征;当召回率为0.135时,相比于传统模型精确率提高了34.3%.


关键词: 终端换机预测,  多因素感知,  深度神经网络,  长短时记忆网络,  全连接网络 
Fig.1 Correlations between terminal replacement and user features
Fig.2 Architecture of terminal replacement prediction model
类别 属性 说明
用户自然属性 性别 男/女
年龄 0~100 岁
入网时长 0~240 个月
是否为亲情网用户 是/否
同客户下C网个数 0~20 个
App类型偏好 社交、视频、阅读等
终端属性 品牌 华为、苹果、小米等
价格 0~15000 元
屏幕尺寸 0~6.95 英寸
网别 3G/4G
像素 0~4000万像素
Tab.1 Description of user attributes and terminal attributes
Fig.3 Distribution of terminal brand usage
Fig.4 LSTM network structure
网络层 超参数
LSTM层 units=d
全连接层 第1层:units=64;Activation=LeakyReLU( $ \alpha $=0.1)
第2层:units=32;Activation=LeakyReLU( $ \alpha $=0.1)
第3层:units=1;Activation=Sigmoid
Tab.2 Hyper-parameter settings
Fig.5 Effect of LSTM output dimension d
方法 P R F1
MRPM-U 0.165 0.135 0.148
MRPM-S 0.157 0.135 0.145
MRPM-H 0.103 0.135 0.117
MRPM 0.192 0.135 0.159
Tab.3 Effect of model performance ignoring different factors
数据集 统计特征
用户通话数据 近30 日日平均通话次数
近180 日日平均通话次数
近30 日日平均通话时长
近180 日日平均通话时长
近30 日当日较上日通话次数平均增长率
近180 日当日较上日通话次数平均增长率
近30 日当日较上日通话时长平均增长率
近180 日当日较上日通话时长平均增长率
用户流量使用数据 近30 日日平均上行流量
近180 日日平均上行流量
近30 日日平均下行流量
近180 日日平均下行流量
近30 日当日较上日上行流量平均增长率
近180 日当日较上日上行流量平均增长率
近30 日当日较上日下行流量平均增长率
近180 日当日较上日下行流量平均增长率
Tab.4 Statistical characteristics of user behavior data
方法 P R F1
LR 0.105 0.135 0.118
SVM 0.121 0.135 0.128
XGBoost 0.143 0.135 0.139
MRPM 0.192 0.135 0.159
Tab.5 Precision and F1 score of different models when recall is 0.135
Fig.6 Precision-recall curves of different models
[1]   ZHANG K, CAI Z, LV T. The research on the pricing system of mobile value-added service for 3G [C]//International Conference on Management Science and Engineering. Harbin: IEEE, 2007: 234-238.
[2]   CHEN J, GUO J. A choreography approach for value-added services creation [C]//International Conference on Wireless Communications, Networking and Mobile Computing. Beijing: IEEE, 2009: 1-4.
[3]   BUGHIN J Reaping the benefits of big data in telecom[J]. Journal of Big Data, 2016, 3 (1): 14
doi: 10.1186/s40537-016-0048-1
[4]   ZHAO Z, GUO J, DING E, et al. Terminal replacement prediction based on deep belief networks [C]//International Conference on Network and Information Systems for Computers. Wuhan: IEEE, 2015: 255-258.
[5]   HADDEN J, TIWARI A, ROY R, et al Churn prediction: does technology matter[J]. International Journal of Intelligent Technology, 2006, 1 (2): 104- 110
[6]   SHAO G, CHEN W, CHENG X, et al. Telecom big data based user analysis and application in telecom industry [C]//International Conference on 5G for Future Wireless Networks. Beijing: Springer, 2017: 99-109.
[7]   ZHANG Z, LIN H, LIU K, et al A hybrid fuzzy-based personalized recommender system for telecom products/services[J]. Information Sciences, 2013, 235: 117- 129
doi: 10.1016/j.ins.2013.01.025
[8]   YANG D, WU Z, WANG X, et al. Predicting replacement of smartphones with mobile App usage [C]//International Conference on Web Information Systems Engineering. Shanghai: Springer, 2016: 343-351.
[9]   HUANG B, KECHADI M, BUCKLEY B Customer churn prediction in telecommunications[J]. Expert Systems with Applications, 2012, 39 (1): 1414- 1425
doi: 10.1016/j.eswa.2011.08.024
[10]   VAEFIADIS T, DIAMANTARAS K, SARIGIANNIDIS G, et al A comparison of machine learning techniques for customer churn prediction[J]. Simulation Modelling Practice and Theory, 2015, 55: 1- 9
doi: 10.1016/j.simpat.2015.03.003
[11]   XIA G, JIN D Model of customer churn prediction on support vector machine[J]. Systems Engineering: Theory and Practice, 2008, 28 (1): 71- 77
doi: 10.1016/S1874-8651(09)60003-X
[12]   IDRIS A, ASIFULLAH K, YEON S. Genetic programming and adaboosting based churn prediction for telecom [C]//International Conference on Systems, Man, and Cybernetics. Seoul: IEEE, 2012: 1328-1332.
[13]   JAMIL S, ASIFULLAH K. Churn comprehension analysis for telecommunication industry using ALBA [C]// International Conference on Emerging Technologies. Islamabad: IEEE, 2016: 1-5.
[14]   LAURILA J, GATICA-PEREZ D, AAD I, et al From big smartphone data to worldwide research: the mobile data challenge[J]. Pervasive and Mobile Computing, 2013, 9 (6): 752- 771
doi: 10.1016/j.pmcj.2013.07.014
[15]   STONE C. Optimal global rates of convergence for nonparametric regression [J]. The Annals of Statistics. 1982, 10(4): 1040-1053.
[16]   LIAN J, ZHOU X, ZHANG F, et al. xDeepFM: combining explicit and implicit feature interactions for recommender systems [C]//ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. London: ACM, 2018: 1754-1763.
[17]   SUTSKEVER I, VINYALS O, LE Q. Sequence to sequence learning with neural networks [C]//Advances in Neural Information Processing Systems. Montreal: MIT Press, 2014: 3104-3112.
[18]   HOCHREITER S, SCHMIDHUBER J Long short-term memory[J]. Neural Computation, 1997, 9 (8): 1735- 1780
doi: 10.1162/neco.1997.9.8.1735
[19]   熊冰妍, 王国胤, 邓维斌 分级式代价敏感决策树及其在手机换机预测中的应用[J]. 山东大学学报: 工学版, 2015, 45 (5): 36- 42
XIONG Bing-yan, WANG Guo-yin, DENG Wei-bin Hierarchical cost sensitive decision tree and its application in the prediction of the mobile phone replacement[J]. Journal of Shandong University: Engineering Science, 2015, 45 (5): 36- 42
[1] Jia-hui XU,Jing-chang WANG,Ling CHEN,Yong WU. Surface water quality prediction model based on graph neural network[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 601-607.
[2] Yi-zhe MAO,Guo-fang GONG,Xing-hai ZHOU,Fei WANG. Identification of TBM surrounding rock based on Markov process and deep neural network[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 448-454.
[3] Shi-da CHEN,Qiang LIU,Liang HAN. Gradient sparsification compression approach to reducing communication in distributed training[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 386-394.
[4] Wen-shu LI,Tao-tao ZOU,Hong-yan WANG,Hai HUANG. Traffic accident quantity prediction model based on dual-scale long short-term memory network[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1613-1619.
[5] Jin-sheng JIANG,Hao-ran REN,Han-ye LI. Seismic data processing based on convolutional autoencoder[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 978-984.
[6] Jin-hai ZHOU,Yi-chuan WANG,Jing-ping TONG,Shi-yi ZHOU,Xiang-fei WU. Ultra wide band radar gait recognition based on slow-time segmentation[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 283-290.
[7] Chang WANG,Yong-sheng ZHANG,Xu WANG,Ying YU. Remote sensing image change detection method based on deep neural networks[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2138-2148.