|
|
|
| Review of underwater manipulators |
Huaping XIAO( ),hanlin LI,Shuhai LIU |
| College of Mechanical and Transportation Engineering, China University of Petroleum, Beijing 102249, China |
|
|
|
Abstract The development of underwater manipulators was reviewed from the perspective of actuation methods. The key roles of dynamic modeling, motion control, and autonomous intelligence in the operations of underwater manipulators were discussed, and the trend of end-effectors evolving from rigid to flexible structures was analyzed. Problems of existing underwater manipulators in aspects such as structural design, dynamic modeling, and autonomous intelligent control were summarized. The aim of the dynamic modeling, motion control, and autonomous intelligence, which are the key technologies for realizing the operations of underwater manipulators, is to deal with the complexity and uncertainty of underwater operational environments. The intelligent underwater manipulators with the capabilities of autonomous operation and precise motion control have broad application prospects in marine engineering, deep-sea exploration, and ocean resource development.
|
|
Received: 11 January 2025
Published: 15 December 2025
|
|
|
| Fund: 北京市自然科学基金资助项目(3232013). |
水下机械手研究进展
从驱动方式的角度综述水下机械手的发展现状,讨论动力学建模、运动控制及自主智能化在水下机械手作业中的关键作用,分析末端执行器从刚性向柔性演化的趋势,总结现有水下机械手在结构设计、动力学模型、自主智能控制等方面存在的问题. 动力学建模、运动控制及自主智能技术作为实现水下机械手作业的关键技术,旨在应对作业环境的复杂性和不确定性. 具有自主作业与精确运动控制能力的智能水下机械手在现代海洋工程、深海探索以及海洋资源开发中展现出广阔的应用前景.
关键词:
水下机械手,
驱动方式,
动力学模型,
运动控制,
自主智能化,
末端执行器
|
|
| [1] |
MORAN M E Evolution of robotic arms[J]. Journal of Robotic Surgery, 2007, 1 (2): 103- 111
doi: 10.1007/s11701-006-0002-x
|
|
|
| [2] |
WANG F, LIU H, CAO L, et al. A novel lightweight underwater manipulator based on ROS2 for reliable intervention [C]// Proceedings of the 9th International Conference on Automation, Control and Robotics Engineering. Jeju Island: IEEE, 2024: 345–349.
|
|
|
| [3] |
ANTONELLI G. Underwater robots: 2nd edition [M]. Cham: Springer, 2006: 1–7.
|
|
|
| [4] |
JONES D O B Using existing industrial remotely operated vehicles for deep-sea science[J]. Zoologica Scripta, 2009, 38 (s1): 41- 47
doi: 10.1111/j.1463-6409.2007.00315.x
|
|
|
| [5] |
HOTTA S, MITSUI Y, SUKA M, et al Lightweight underwater robot developed for archaeological surveys and excavations[J]. ROBOMECH Journal, 2023, 10 (1): 2
doi: 10.1186/s40648-023-00240-4
|
|
|
| [6] |
SIVČEV S, COLEMAN J, OMERDIĆ E, et al Underwater manipulators: a review[J]. Ocean Engineering, 2018, 163: 431- 450
doi: 10.1016/j.oceaneng.2018.06.018
|
|
|
| [7] |
KOŁODZIEJCZYK W Some considerations on an underwater robotic manipulator subjected to the environmental disturbances caused by water current[J]. Acta Mechanica et Automatica, 2016, 10 (1): 43- 49
doi: 10.1515/ama-2016-0008
|
|
|
| [8] |
ZHONG Y, YANG F Dynamic modeling and adaptive fuzzy sliding mode control for multi-link underwater manipulators[J]. Ocean Engineering, 2019, 187: 106202
doi: 10.1016/j.oceaneng.2019.106202
|
|
|
| [9] |
ANDERSON V C. MPL experimental RUM [R]. La Jolla: Scripps Institution of Oceanography, 1960: SIO Reference 60-26.
|
|
|
| [10] |
纪辉, 兰宇, 武子为, 等 面向水下作业的水液压机械手研究与展望[J]. 机械工程学报, 2023, 59 (4): 283- 294 JI Hui, LAN Yu, WU Ziwei, et al Research progress and prospect of water hydraulic manipulator for underwater operation[J]. Journal of Mechanical Engineering, 2023, 59 (4): 283- 294
doi: 10.3901/JME.2023.04.283
|
|
|
| [11] |
WANG Z, CUI W For safe and compliant interaction: an outlook of soft underwater manipulators[J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2021, 235 (1): 3- 14
doi: 10.1177/1475090220950911
|
|
|
| [12] |
Woods Hole Oceanographic Institution. History of Alvin [EB/OL]. [2024-07-15]. https://www.whoi.edu/what-we-do/explore/underwater-vehicles/hov-alvin/history-of-alvin/.
|
|
|
| [13] |
顾云冠, 曹智裕, 王道炎, 等. 系缆无人遥控潜水器HR01[J]. 海洋工程, 1987, 5(4): 1–7. GU Yunguan, CAO Zhiyu, WANG Daoyan, et al. Tethered remotely operated vehicle HR01 [J]. The Ocean Engineering, 1987, 5(4): 1–7.
|
|
|
| [14] |
Schilling Robotics. Manipulator systems [EB/OL]. [2024-07-15]. https://www.technipfmc.com/en/what-we-do/subsea/robotics/manipulator-systems/.
|
|
|
| [15] |
Kratf TeleRobotics. Products [EB/OL]. [2024-07-15]. http://krafttelerobotics.cn/products/index.html.
|
|
|
| [16] |
Hydro-Lek. Manipulators [EB/OL]. [2024-07-15]. http://www.hydro-lek.com/manipulators.php.
|
|
|
| [17] |
Forum Energy Technologies. ROV tooling and components [EB/OL]. [2024-07-15]. https://f-e-t.com/subsea/rov-tooling-and-components/.
|
|
|
| [18] |
KNR Systems Inc. HYDRA-UW [EB/OL]. [2024-07-15]. http://rnd.knrsys.com/english/view.html?id_no=25&id_no1=5.
|
|
|
| [19] |
Oceaneering. Atlas hybrid manipulator [EB/OL]. [2024-07-15]. https://www.oceaneering.com/brochures/atlas-hybrid-manipulator/.
|
|
|
| [20] |
Seamor Marine Ltd. Hydraulic articulating robotic manipulator [EB/OL]. [2024-07-15]. https://www.environmental-expert.com/products/seamor-model-7f-h-arm-hydraulic-articulating-robotic-manipulator-281530.
|
|
|
| [21] |
Envirex. Hydraulic light-weight manipulator series [EB/OL]. [2024-07-15]. https://envirex.no/titanrob/.
|
|
|
| [22] |
ISE. Magnum subsea manipulators with integrated telemetry [EB/OL]. [2024-07-15]. http://207.102.77.253/manips.html.
|
|
|
| [23] |
杨喜荣. 深海水下作业型机械手控制系统研究[D]. 杭州: 浙江大学, 2006. YANG Xirong. Research on control system of deep-sea underwater manipulator [D]. Hangzhou: Zhejiang University, 2006.
|
|
|
| [24] |
中国科学院沈阳自动化研究所. 7000米深海作业机械手[EB/OL]. (2015-10-23) [2024-07-20]. http://www.sia.cas.cn/kxcb/kpwz/201510/t20151023_4444028.html.
|
|
|
| [25] |
申雄. 模拟深水环境下双机械手协调作业关键技术研究[D]. 武汉: 华中科技大学, 2013. SHEN Xiong. Study on key technologies for coordinated manipulation for dual manipulators in simulated deepwater environment [D]. Wuhan: Huazhong University of Science and Technology, 2013.
|
|
|
| [26] |
罗高生. 深海七功能主从液压机械手及其非线性鲁棒控制方法研究[D]. 杭州: 浙江大学, 2013. LUO Gaosheng. Research on subsea 7 function master-slave hydraulic manipulator and its nonlinear robust control [D]. Hangzhou: Zhejiang University, 2013.
|
|
|
| [27] |
向忠祥, 茅及愚 “鱼鹰”号载人潜器打捞机械手的研制[J]. 海洋技术, 1990, 9 (1): 12- 17 XIANG Zhongxiang, MAO Jiyu Manipulator development for manned underwater salvage vehicle “the cormorant”[J]. Ocean Technology, 1990, 9 (1): 12- 17
|
|
|
| [28] |
茅及愚, 张向明, 徐国华, 等 兰鲸号潜器两型机械手的结构设计研究[J]. 海洋工程, 1998, 16 (1): 81- 88 MAO Jiyu, ZHANG Xiangming, XU Guohua, et al The structure design and study of two manipulators on blue whale underwater vehicle[J]. The Ocean Engineering, 1998, 16 (1): 81- 88
|
|
|
| [29] |
王千年. 深海液压机械臂的设计与分析[D]. 合肥: 中国科学技术大学, 2021: 6. WANG Qiannian. Design and analysis of deep sea hydraulic manipulator [D]. Hefei: University of Science and Technology of China, 2021: 6.
|
|
|
| [30] |
孟庆鑫, 叶华武, 王晓东 SIWR-Ⅱ水下作业机械手动力机构特性分析[J]. 哈尔滨船舶工程学院学报, 1993, 14 (1): 60- 65 MENG Qingxin, YE Huawu, WANG Xiaodong Analyzing the characteristics of the motive mechanism of SIWR-Ⅱ manipulator under the water[J]. Journal of Harbin Shipbuilding Engineering Institute, 1993, 14 (1): 60- 65
|
|
|
| [31] |
YOERGER D R, SCHEMPF H, DIPIETRO D M Design and performance evaluation of an actively compliant underwater manipulator for full-ocean depth[J]. Journal of Robotic Systems, 1991, 8 (3): 371- 392
doi: 10.1002/rob.4620080306
|
|
|
| [32] |
王承禧, 徐国华, 黄群, 等 自主式水下机械手系统研究[J]. 海洋工程, 1996, 14 (3): 28- 36 WANG Chengxi, XU Guohua, HUANG Qun, et al The research on autonomous underwater manipulator system[J]. The Ocean Engineering, 1996, 14 (3): 28- 36
|
|
|
| [33] |
LANE D M, DAVIES J B C, CASALINO G, et al AMADEUS: advanced manipulation for deep underwater sampling[J]. IEEE Robotics & Automation Magazine, 1997, 4 (4): 34- 45
|
|
|
| [34] |
YUH J, CHOI S K, IKEHARA C, et al. Design of a semi-autonomous underwater vehicle for intervention missions (SAUVIM) [C]// Proceedings of 1998 International Symposium on Underwater Technology. Tokyo: IEEE, 1998: 63–68.
|
|
|
| [35] |
RIBAS D, RIDAO P, TURETTA A, et al I-AUV mechatronics integration for the TRIDENT FP7 project[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20 (5): 2583- 2592
doi: 10.1109/TMECH.2015.2395413
|
|
|
| [36] |
FERNÁNDEZ J J, PRATS M, SANZ P J, et al Grasping for the seabed: developing a new underwater robot arm for shallow-water intervention[J]. IEEE Robotics & Automation Magazine, 2013, 20 (4): 121- 130
|
|
|
| [37] |
张奇峰, 张艾群 基于能源消耗最小的自治水下机器人—机械手系统协调运动研究[J]. 机器人, 2006, 28 (4): 444- 447 ZHANG Qifeng, ZHANG Aiqun Coordinated motion of an autonomous underwater vehicle-manipulator system based on energy consumption minimization[J]. Robot, 2006, 28 (4): 444- 447
|
|
|
| [38] |
XIAO Z, XU G, PENG F, et al Development of a deep ocean electric autonomous manipulator[J]. China Ocean Engineering, 2011, 25 (1): 159- 168
doi: 10.1007/s13344-011-0014-9
|
|
|
| [39] |
HU X, CHEN J, ZHOU H, et al Development of underwater electric manipulator based on interventional autonomous underwater vehicle (AUV)[J]. Journal of Zhejiang University: Science A, 2024, 25 (3): 238- 250
doi: 10.1631/jzus.A2200621
|
|
|
| [40] |
南京华研. 水下电动机械臂 [EB/OL]. [2024-07-21]. https://www.huayanseal.com/?list_8/.
|
|
|
| [41] |
Graal Tech. UMA-1500-Manipulator [EB/OL]. [2024-07-20]. https://www.graaltech.com/products/uma-1500/.
|
|
|
| [42] |
SMITH J S, YU R, SARAFIS I, et al. Computer vision control of an underwater manipulator [C]// Proceedings of OCEANS'94. Brest: IEEE, 1994: I/187–I/192.
|
|
|
| [43] |
LEWANDOWSKI C, AKIN D, DILLOW B, et al. Development of a deep-sea robotic manipulator for autonomous sampling and retrieval [C]// Proceedings of the IEEE/OES Autonomous Underwater Vehicles. Woods Hole: IEEE, 2008: 1–6.
|
|
|
| [44] |
TERRIBILE A, PRENDIN W, LANZA R. An innovative electromechanical underwater telemanipulator-present status and future development [C]// Proceedings of OCEANS'94. Brest: IEEE, 2002: II/188–II/191.
|
|
|
| [45] |
Ocean Innovation System. STR OIS STR 5 function electric manipulator arm [EB/OL]. [2024-07-20]. https://www.str-subsea.com/products/rov-tools/manipulators-boom-arms/str-ois-str-5-function-electric-manipulator-arm.
|
|
|
| [46] |
Reach Robotics. ROV arms for harsh environments [EB/OL]. [2024-07-20]. https://reachrobotics.com/products/manipulators/.
|
|
|
| [47] |
ECA. Subsea electrical manipulator arms [EB/OL]. [2024-07-20]. https://www.ecagroup.com/en/solutions/subsea-electrical-manipulator-arms.
|
|
|
| [48] |
张建华. 深海模拟环境中液压水下机械手的仿真研究[D]. 武汉: 华中科技大学, 2012. ZHANG Jianhua. Research and simulation of hydraulic underwater manipulator in the simulated environment of deep sea [D]. Wuhan: Huazhong University of Science and Technology, 2012.
|
|
|
| [49] |
安江波. 大时延水下机械手位置伺服控制技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2008. AN Jiangbo. Research on position servo control of underwater manipulator with time delay [D]. Harbin: Harbin Engineering University, 2008.
|
|
|
| [50] |
PURUSHOTHAM A Kane’s method for robotic arm dynamics: a novel approach[J]. IOSR Journal of Mechanical and Civil Engineering, 2013, 6 (4): 7- 13
doi: 10.9790/1684-640713
|
|
|
| [51] |
裴香丽, 田颖, 张明路 水下机械手水动力学分析及控制方法研究[J]. 船舶力学, 2022, 26 (5): 679- 690 PEI Xiangli, TIAN Ying, ZHANG Minglu Research on hydrodynamic analysis and control method of underwater manipulators[J]. Journal of Ship Mechanics, 2022, 26 (5): 679- 690
|
|
|
| [52] |
MORISON J R, JOHNSON J W, SCHAAF S A The force exerted by surface waves on piles[J]. Journal of Petroleum Technology, 1950, 2 (5): 149- 154
doi: 10.2118/950149-G
|
|
|
| [53] |
王华, 孟庆鑫, 王立权 基于切片理论的水下灵巧手手指动力学分析[J]. 机器人, 2007, 29 (2): 160- 166 WANG Hua, MENG Qingxin, WANG Liquan Analysis on finger dynamics of dexterous underwater hand based on strip theory[J]. Robot, 2007, 29 (2): 160- 166
|
|
|
| [54] |
王懿, 张爱霞, 郭瑞岩, 等 六自由度水下机械臂动力学模型及流阻影响研究[J]. 北京理工大学学报, 2020, 40 (11): 1143- 1149 WANG Yi, ZHANG Aixia, GUO Ruiyan, et al Dynamic model of 6-DOF underwater manipulator and its influence of flow resistance[J]. Transactions of Beijing Institute of Technology, 2020, 40 (11): 1143- 1149
|
|
|
| [55] |
高涵, 张明路, 张小俊, 等 水下机械手动力学模型及力矩影响研究[J]. 机械设计与制造, 2017, (3): 68- 71 GAO Han, ZHANG Minglu, ZHANG Xiaojun, et al Research on underwater manipulator dynamics model and torque influence[J]. Machinery Design & Manufacture, 2017, (3): 68- 71
|
|
|
| [56] |
ZHAO S, YUH J Experimental study on advanced underwater robot control[J]. IEEE Transactions on Robotics, 2005, 21 (4): 695- 703
doi: 10.1109/TRO.2005.844682
|
|
|
| [57] |
肖治琥, 徐国华 流干扰下的水下机械手动力学建模分析[J]. 中国机械工程, 2011, 22 (21): 2521- 2526 XIAO Zhihu, XU Guohua Study on dynamics of underwater manipulator under flow influences[J]. China Mechanical Engineering, 2011, 22 (21): 2521- 2526
|
|
|
| [58] |
GE D, WANG G, GE J, et al Trajectory tracking control of two-joint underwater manipulator in ocean-wave environment[J]. Ocean Engineering, 2024, 292: 116329
doi: 10.1016/j.oceaneng.2023.116329
|
|
|
| [59] |
刘晓瑜, 田颖, 张明路 水下机械手动力学研究综述[J]. 工程设计学报, 2021, 28 (4): 389- 398 LIU Xiaoyu, TIAN Ying, ZHANG Minglu Review of underwater manipulator dynamics research[J]. Chinese Journal of Engineering Design, 2021, 28 (4): 389- 398
|
|
|
| [60] |
KOLODZIEJCZYK W The method of determination of transient hydrodynamic coefficients for a single DOF underwater manipulator[J]. Ocean Engineering, 2018, 153: 122- 131
doi: 10.1016/j.oceaneng.2018.01.090
|
|
|
| [61] |
SARPKAYA T Lift, drag, and added-mass coefficients for a circular cylinder immersed in a time-dependent flow[J]. Journal of Applied Mechanics, 1963, 30 (1): 13- 15
doi: 10.1115/1.3630062
|
|
|
| [62] |
KOŁODZIEJCZYK W, KOŁODZIEJCZYK M, KUŹMIEROWSKI T, et al Transient hydrodynamic coefficients for a single DOF underwater manipulator of a square cross-section[J]. Ocean Engineering, 2023, 268: 113438
doi: 10.1016/j.oceaneng.2022.113438
|
|
|
| [63] |
WANG X, LIU Y, XUE G, et al Transient hydrodynamics coefficients analysis of a six-degree-of-freedom underwater manipulator[J]. Ocean Engineering, 2024, 312: 119156
doi: 10.1016/j.oceaneng.2024.119156
|
|
|
| [64] |
刘晓瑜. 基于水动力学的水下机械臂动力学分析及仿真实 验[D].天津: 河北工业大学, 2021. LIU Xiaoyu. Research on dynamic analysis and simulation test of underwater manipulator based on hydrodynamics [D]. Tianjin: Hebei University of Technology, 2021.
|
|
|
| [65] |
王庆云, 韩明勇, 常开应, 等 水下机器人水动力参数CFD计算及操纵性预报[J]. 中国海洋平台, 2023, 38 (1): 50- 56 WANG Qingyun, HAN Mingyong, CHANG Kaiying, et al CFD calculation of underwater vehicle hydrodynamic parameters and maneuverability prediction[J]. China Offshore Platform, 2023, 38 (1): 50- 56
doi: 10.12226/j.issn.1001-4500.2023.01.20230108
|
|
|
| [66] |
胡志强, 林扬, 谷海涛 水下机器人粘性类水动力数值计算方法研究[J]. 机器人, 2007, 29 (2): 145- 150 HU Zhiqiang, LIN Yang, GU Haitao On numerical computation of viscous hydrodynamics of unmanned underwater vehicle[J]. Robot, 2007, 29 (2): 145- 150
|
|
|
| [67] |
FILARETOV V F, KONOPLIN A J, GETMAN A V Experimental determination of the viscous friction coefficients for calculation of the force impacts on the moving links of the underwater manipulators[J]. Mehatronika, Avtomatizacia, Upravlenie, 2015, 16 (11): 738- 743
doi: 10.17587/mau.16.738-743
|
|
|
| [68] |
ZHANG M, LIU X, TIAN Y Modeling analysis and simulation of viscous hydrodynamic model of single-DOF manipulator[J]. Journal of Marine Science and Engineering, 2019, 7 (8): 261
doi: 10.3390/jmse7080261
|
|
|
| [69] |
安江波, 张铭钧, 孙昌将 水下机械手控制系统研究[J]. 机械设计与制造, 2009, (5): 185- 187 AN Jiangbo, ZHANG Mingjun, SUN Changjiang Research on control of underwater manipulator[J]. Machinery Design & Manufacture, 2009, (5): 185- 187
|
|
|
| [70] |
程尉. 小型水下双臂机械手控制系统研究[D]. 武汉: 华中科技大学, 2020. CHENG Wei. Research on small underwater dual-arm manipulator control system [D]. Wuhan: Huazhong University of Science and Technology, 2020.
|
|
|
| [71] |
YUH J, ZHAO S, LEE P M. Application of adaptive disturbance observer control to an underwater manipulator [C]// IEEE International Conference on Robotics and Automation. Seoul: IEEE, 2001: 3244–3249.
|
|
|
| [72] |
SANTHAKUMAR M A nonregressor nonlinear disturbance observer-based adaptive control scheme for an underwater manipulator[J]. Advanced Robotics, 2013, 27 (16): 1273- 1283
doi: 10.1080/01691864.2013.819608
|
|
|
| [73] |
XU G, XIAO Z, GUO Y, et al. Trajectory tracking for underwater manipulator using sliding mode control [C]// Proceedings of the IEEE International Conference on Robotics and Biomimetics. Sanya: IEEE, 2007: 2127–2132.
|
|
|
| [74] |
VENKATESAN V, MOHAN S, KIM J. Disturbance observer based terminal sliding mode control of an underwater manipulator [C]// Proceedings of the 13th International Conference on Control Automation Robotics & Vision. Singapore: IEEE, 2014: 1566–1572.
|
|
|
| [75] |
谭定忠, 张铭钧, 王立权, 等 水下作业液压机械手夹持力模糊控制技术的研究[J]. 机床与液压, 2001, 29 (1): 24- 25 TAN Dingzhong, ZHANG Mingjun, WANG Liquan, et al Research on fuzzy control technology of grasping force in underwater hydraulic manipulator[J]. Machine Tool & Hydraulics, 2001, 29 (1): 24- 25
doi: 10.3969/j.issn.1001-3881.2001.01.010
|
|
|
| [76] |
杨犇, 梁喜凤 基于模糊补偿的七自由度机械手轨迹跟踪控制[J]. 机床与液压, 2012, 40 (23): 73- 75 YANG Ben, LIANG Xifeng Track following control of a 7-DOF manipulator based on fuzzy logic compensation[J]. Machine Tool & Hydraulics, 2012, 40 (23): 73- 75
|
|
|
| [77] |
LUO W, CONG H. Robust NN control of the manipulator in the underwater vehicle-manipulator system [C]// Advances in Neural Networks. Hokkaido: Springer, 2017: 75–82.
|
|
|
| [78] |
SHANG D, LI X, YIN M, et al Rotation tracking control strategy of underwater flexible telescopic manipulator based on neural network compensation for water environment disturbance[J]. Ocean Engineering, 2023, 284: 115245
doi: 10.1016/j.oceaneng.2023.115245
|
|
|
| [79] |
王立权, 王春林, 杜维杰, 等 基于Fuzzy-PID的水下作业机械手控制系统设计[J]. 液压与气动, 2005, 29 (1): 27- 31 WANG Liquan, WANG Chunlin, DU Weijie, et al Design of hydraulic control system for an underwater manipulator based on fuzzy-PID[J]. Chinese Hydraulics & Pneumatics, 2005, 29 (1): 27- 31
|
|
|
| [80] |
胡雯蔷, 徐筱龙, 徐国华 基于小脑模型关节控制器的水下机械手复合运动控制的研究及仿真[J]. 中国机械工程, 2008, 19 (16): 1891- 1894 HU Wenqiang, XU Xiaolong, XU Guohua Research and simulation on multiplex-athletics control of underwater manipulator based on CMAC[J]. China Mechanical Engineering, 2008, 19 (16): 1891- 1894
|
|
|
| [81] |
付雯, 温浩, 黄俊珲, 等 基于非线性动力学模型补偿的水下机械臂自适应滑模控制[J]. 清华大学学报: 自然科学版, 2023, 63 (7): 1068- 1077 FU Wen, WEN Hao, HUANG Junhui, et al Adaptive sliding mode control of underwater manipulator based on nonlinear dynamics model compensation[J]. Journal of Tsinghua University: Science and Technology, 2023, 63 (7): 1068- 1077
|
|
|
| [82] |
高阳, 张晓晖, 高玉儿, 等 基于神经网络和模糊补偿的水下机械臂控制[J]. 计算机工程与应用, 2022, 58 (15): 317- 323 GAO Yang, ZHANG Xiaohui, GAO Yu’er, et al Control of underwater manipulator based on neural network and fuzzy compensation[J]. Computer Engineering and Applications, 2022, 58 (15): 317- 323
|
|
|
| [83] |
HILDEBRANDT M, KERDELS J, ALBIEZ J, et al. Robust vision-based semi-autonomous underwater manipulation [M]// Intelligent Autonomous Systems 10. Baden: IOS Press, 2008: 308–315.
|
|
|
| [84] |
SIVČEV S, ROSSI M, COLEMAN J, et al Fully automatic visual servoing control for work-class marine intervention ROVs[J]. Control Engineering Practice, 2018, 74: 153- 167
doi: 10.1016/j.conengprac.2018.03.005
|
|
|
| [85] |
肖治琥. 深水机械手动力学特性及自主作业研究[D]. 武汉: 华中科技大学, 2011. XIAO Zhihu. Study on dynamic characteristics and autonomous manipulation of underwater manipulator [D]. Wuhan: Huazhong University of Science and Technology, 2011.
|
|
|
| [86] |
JUN B H, SHIM H W, LEE P M, et al. Workspace control system of underwater tele-operated manipulators on ROVs [C]// Proceedings of the OCEANS 2009-EUROPE. Bremen: IEEE, 2009: 1–6.
|
|
|
| [87] |
CARRERA A, PALOMERAS N, HURTÓS N, et al Cognitive system for autonomous underwater intervention[J]. Pattern Recognition Letters, 2015, 67: 91- 99
doi: 10.1016/j.patrec.2015.06.010
|
|
|
| [88] |
LANE D M, MAURELLI F, KORMUSHEV P, et al PANDORA-persistent autonomy through learning, adaptation, observation and replanning[J]. IFAC-PapersOnLine, 2015, 48 (2): 238- 243
doi: 10.1016/j.ifacol.2015.06.039
|
|
|
| [89] |
王聪, 张子扬, 陈言壮, 等 基于深度强化学习与多参数域随机化的水下机械手自适应抓取研究[J]. 信息与控制, 2022, 51 (6): 651- 661 WANG Cong, ZHANG Ziyang, CHEN Yanzhuang, et al Deep reinforcement learning and multi-parameter domain randomization based underwater adaptive grasping research for underwater manipulator[J]. Information and Control, 2022, 51 (6): 651- 661
|
|
|
| [90] |
HUANG H, JIANG T, ZHANG Z, et al Learning strategies for underwater robot autonomous manipulation control[J]. Journal of the Franklin Institute, 2024, 361 (7): 106773
doi: 10.1016/j.jfranklin.2024.106773
|
|
|
| [91] |
YANG X, GAO J, WANG P, et al Digital twin-based stress prediction for autonomous grasping of underwater robots with reinforcement learning[J]. Expert Systems with Applications, 2025, 267: 126164
doi: 10.1016/j.eswa.2024.126164
|
|
|
| [92] |
LANE D M, DAVIES J B C, ROBINSON G, et al The AMADEUS dextrous subsea hand: design, modeling, and sensor processing[J]. IEEE Journal of Oceanic Engineering, 1999, 24 (1): 96- 111
doi: 10.1109/48.740158
|
|
|
| [93] |
TAKEUCHI K, NOMURA S, TAMAMOTO T, et al. Development of multi-joint gripper for underwater operations [C]// Proceedings of the OCEANS - MTS/IEEE Kobe Techno-Oceans. Kobe: IEEE, 2018: 1–6.
|
|
|
| [94] |
TEOH Z E, PHILLIPS B T, BECKER K P, et al Rotary-actuated folding polyhedrons for midwater investigation of delicate marine organisms[J]. Science Robotics, 2018, 3 (20): eaat5276
doi: 10.1126/scirobotics.aat5276
|
|
|
| [95] |
KAMPMANN P, KIRCHNER F Towards a fine-manipulation system with tactile feedback for deep-sea environments[J]. Robotics and Autonomous Systems, 2015, 67: 115- 121
doi: 10.1016/j.robot.2014.09.033
|
|
|
| [96] |
SIMETTI E, WANDERLINGH F, TORELLI S, et al Autonomous underwater intervention: experimental results of the MARIS project[J]. IEEE Journal of Oceanic Engineering, 2018, 43 (3): 620- 639
doi: 10.1109/JOE.2017.2733878
|
|
|
| [97] |
WANG H, HUANG X, QI X, et al. Development of underwater robot hand and its finger tracking control [C]// Proceedings of the IEEE International Conference on Automation and Logistics. Jinan: IEEE, 2007: 2973–2977.
|
|
|
| [98] |
MENG Q, WANG H, LI P, et al. Dexterous underwater robot hand: HEU hand II [C]// Proceedings of the International Conference on Mechatronics and Automation. Luoyang: IEEE, 2006: 1477–1482.
|
|
|
| [99] |
SPADAFORA F, MUZZUPAPPA M, BRUNO F, et al Design and construction of a robot hand prototype for underwater applications[J]. IFAC-PapersOnLine, 2015, 48 (2): 294- 299
doi: 10.1016/j.ifacol.2015.06.048
|
|
|
| [100] |
STUART H, WANG S, KHATIB O, et al The Ocean One hands: an adaptive design for robust marine manipulation[J]. The International Journal of Robotics Research, 2017, 36 (2): 150- 166
doi: 10.1177/0278364917694723
|
|
|
| [101] |
BEMFICA J R, MELCHIORRI C, MORIELLO L, et al Mechatronic design of a three-fingered gripper for underwater applications[J]. IFAC Proceedings Volumes, 2013, 46 (5): 307- 312
doi: 10.3182/20130410-3-CN-2034.00080
|
|
|
| [102] |
BEMFICA J R, MELCHIORRI C, MORIELLO L, et al. A three-fingered cable-driven gripper for underwater applications [C]// Proceedings of the IEEE International Conference on Robotics and Automation. Hong Kong: IEEE, 2014: 2469–2474.
|
|
|
| [103] |
WANG T, GE L, GU G Programmable design of soft pneu-net actuators with oblique chambers can generate coupled bending and twisting motions[J]. Sensors and Actuators A: Physical, 2018, 271: 131- 138
doi: 10.1016/j.sna.2018.01.018
|
|
|
| [104] |
LIU J, IACOPONI S, LASCHI C, et al Underwater mobile manipulation: a soft arm on a benthic legged robot[J]. IEEE Robotics & Automation Magazine, 2020, 27 (4): 12- 26
|
|
|
| [105] |
GONG Z, CHEN B, LIU J, et al An opposite-bending-and-extension soft robotic manipulator for delicate grasping in shallow water[J]. Frontiers in Robotics and AI, 2019, 6: 26
doi: 10.3389/frobt.2019.00026
|
|
|
| [106] |
VOGT D M, BECKER K P, PHILLIPS B T, et al Shipboard design and fabrication of custom 3D-printed soft robotic manipulators for the investigation of delicate deep-sea organisms[J]. PLoS One, 2018, 13 (8): e0200386
doi: 10.1371/journal.pone.0200386
|
|
|
| [107] |
SINATRA N R, TEEPLE C B, VOGT D M, et al Ultragentle manipulation of delicate structures using a soft robotic gripper[J]. Science Robotics, 2019, 4 (33): eaax5425
doi: 10.1126/scirobotics.aax5425
|
|
|
| [108] |
DOU J, ZHANG D, SUN Y, et al. Design of enveloping underwater soft gripper based on the bionic structure [C]// International Conference on Intelligent Robotics and Applications. Harbin: Springer, 2022: 311–322.
|
|
|
| [109] |
WU M, AFRIDI W H, WU J, et al Octopus-inspired underwater soft robotic gripper with crawling and swimming capabilities[J]. Research, 2024, 7: 456
doi: 10.34133/research.0456
|
|
|
| [110] |
GALLOWAY K C, BECKER K P, PHILLIPS B, et al Soft robotic grippers for biological sampling on deep reefs[J]. Soft Robotics, 2016, 3 (1): 23- 33
doi: 10.1089/soro.2015.0019
|
|
|
| [111] |
LICHT S, COLLINS E, BALLAT-DURAND D, et al. Universal jamming grippers for deep-sea manipulation [C]// Proceedings of the OCEANS 2016 MTS/IEEE Monterey. Monterey: IEEE, 2016: 1–5.
|
|
|
| [112] |
ABOZAID Y A, ABOELRAYAT M T, FAHIM I S, et al Soft robotic grippers: a review on technologies, materials, and applications[J]. Sensors and Actuators A: Physical, 2024, 372: 115380
doi: 10.1016/j.sna.2024.115380
|
|
|
| [113] |
SHINTAKE J, SHEA H, FLOREANO D. Biomimetic underwater robots based on dielectric elastomer actuators [C]// Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Daejeon: IEEE, 2016: 4957–4962.
|
|
|
| [114] |
KOFOD G, WIRGES W, PAAJANEN M, et al Energy minimization for self-organized structure formation and actuation[J]. Applied Physics Letters, 2007, 90 (8): 81916
doi: 10.1063/1.2695785
|
|
|
| [115] |
ENGEBERG E D, DILIBAL S, VATANI M, et al Anthropomorphic finger antagonistically actuated by SMA plates[J]. Bioinspiration & Biomimetics, 2015, 10 (5): 56002
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|