Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (6): 1293-1302    DOI: 10.3785/j.issn.1008-973X.2025.06.020
    
Ultrasonic vibration energy harvesting method based on piezoelectric and electromagnetic composite effects
Yufei WANG(),Kangkang LI,Haibin ZHANG,Yuanbo CHEN,Guangqing WANG*()
School of Information and Electronic Engineering (Sussex Artificial Intelligence Institute), Zhejiang Gongshang University, Hangzhou 310018, China
Download: HTML     PDF(2867KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A method for harvesting ultrasonic vibration energy based on piezoelectric and electromagnetic composite effects was proposed, to efficiently harvest vibration energy from ultrasound equipment and convert it into electrical energy. Aiming at the characteristics of small amplitude and large acceleration of ultrasonic vibration, a circular piezoelectric vibration energy harvester based on positive piezoelectric effect was integrated and designed in ultrasonic equipment to directly harvest and convert the micro ultrasonic vibration energy in equipment operation. A conversion mechanism was designed to transform micro ultrasonic vibration into macroscopic large-scale rotational motion, taking into account the characteristics of small amplitude and high frequency of ultrasonic vibration. Based on the electromagnetic induction mechanism, a rotational energy harvester was further integrated into the ultrasonic equipment to achieve the micro/macro conversion and acquisition of ultrasonic vibration energy. A piezoelectric/electromagnetic composite ultrasonic vibration energy harvesting and conversion model was established based on the piezoelectric effect and electromagnetic induction principle. The influence of model parameters on the the performance of ultrasonic vibration energy harvesting was simulated and analyzed, and the accuracy of the model was experimentally verified. Results showed that under the ultrasonic excitation with a frequency of 38.2 kHz and amplitude of 1.88 μm, the output voltage of the composite harvester was 46.7 V, and the output power of the piezoelectric and electromagnetic energy harvesters were 104.3 mW and 43.8 mW, respectively. The output power met the power supply requirements of low-power electronic devices.



Key wordsultrasound vibration      piezoelectric effect      electromagnetic rotating      energy harvesting      dynamic model     
Received: 05 June 2024      Published: 30 May 2025
CLC:  TM 354  
Fund:  浙江省自然科学基金资助项目(LY24E070002);浙江省教育厅项目(Y202250102).
Corresponding Authors: Guangqing WANG     E-mail: 907445086@qq.com;wgqjx@zjsu.edu.cn
Cite this article:

Yufei WANG,Kangkang LI,Haibin ZHANG,Yuanbo CHEN,Guangqing WANG. Ultrasonic vibration energy harvesting method based on piezoelectric and electromagnetic composite effects. Journal of ZheJiang University (Engineering Science), 2025, 59(6): 1293-1302.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.06.020     OR     https://www.zjujournals.com/eng/Y2025/V59/I6/1293


基于压电与电磁复合效应的超声振动能量采集方法

为了高效采集超声设备中的振动能量并将其转换为电能,提出基于压电与电磁复合效应的超声振动能量采集方法. 针对超声振动幅值小、加速度大的特点,在超声设备中集成设计基于正压电效应的环状压电振动能量采集器,直接采集并转换设备运行中的微幅超声振动能量;针对超声振动幅值小、频率高的特点,设计将微观的超声振动转变为宏观的大幅旋转运动的转换机构,基于电磁感应机理在超声设备中进一步集成设计旋转运动能量采集器,实现超声振动能量的微观/宏观转换与采集. 基于压电效应和电磁感应原理建立压电/电磁复合超声振动能量采集与转换模型,通过仿真分析模型参数对超声振动能量采集性能的影响,通过实验验证了模型的准确性. 研究结果表明,在频率为38.2 kHz、幅值为1.88 μm的超声激励下,复合采集器的输出电压为46.7 V,压电和电磁能量采集器的输出功率分别为104.3、43.8 mW,输出功率满足低功耗电子器件的供电需求.


关键词: 超声振动,  压电效应,  电磁旋转,  能量采集,  动力学模型 
Fig.1 Schematic diagram of piezoelectric/electromagnetic composite ultrasonic vibration energy collection mechanism
Fig.2 Piezoelectric/electromagnetic complex energy collection mechanism diagram
Fig.3 Integrated structure of piezoelectric ultrasonic generation and harvesting
Fig.4 Ultrasonic/rotational transformation structure
Fig.5 Contact model of friction interface
参数数值
摩擦层的弹性模量E0/GPa67
摩擦层的厚度h0/mm0.5
凸齿上产生的行波数n9
凸齿表面至中性层的距离a/mm2.5
凸齿上齿的总数nt90
动摩擦因素$ \mu_{\mathrm{d}} $0.14
转换结构与圆盘平均接触半径Rav/mm27
转换结构与圆盘径向接触宽度b/mm2
转换结构的转动惯量J/(kg·m2)8.22×10?5
法向预压力Fn/N2
缠绕线圈半径r/mm9.8
永磁铁表磁Br/T100
永磁铁底面直径D/mm10
永磁铁的高H/mm15
真空中磁导率$ \mu_0 $/(H·m?1)$ 4{\text{π}}$×10?7
磁力系数ko422000
线圈匝数N500
磁铁与电机轴心的距R/cm3
Tab.1 Structure size and material parameters of piezoelectric energy harvester
Fig.6 Simulation result of variation of output voltage and power with excitation frequency
Fig.7 Ultrasonic amplitude and voltage simulation waveform diagram
Fig.8 Simulation result of influence of magnet on speed of transfer structure
Fig.9 Simulation result of influence of number of magnets, distance between coil and magnet on induced voltage
Fig.10 Simulation result of combined effect of magnet height and coil turns on induced voltage
Fig.11 Principle prototype of piezoelectric/electromagnetic composite energy harvester
Fig.12 Piezoelectric/electromagnetic composite energy collection experimental test system
名称材料ρo/(kg·m?3)G/GPaν
压电陶瓷PZT-8750076.50.32
金属基体磷青铜890067.00.30
Tab.2 Main materials and characteristics of ultrasonic motor
Fig.13 Principle prototype of piezoelectric ultrasonic energy harvester
Fig.14 Experimental result of variation of output voltage with vibration amplitude
Fig.15 Variation of excitation voltage and power with excitation frequency
Fig.16 PZT output voltage waveform harvested
Fig.17 Variation of induced voltage and power with magnet number and magnet distance
Fig.18 Variation of induced voltage and power with coil turns and volume of magnet
Fig.19 Variation of output voltage with time
Fig.20 Variation of influence of load on output voltage and power
Fig.21 Demonstration of LED illumination by piezoelectric/electromagnetic composite ultrasonic vibration energy harvester
[1]   王云灏, 孙铭会, 辛毅, 等 基于压电薄膜传感器的机器人触觉识别系统[J]. 浙江大学学报: 工学版, 2022, 56 (4): 702- 710
WANG Yunhao, SUN Minghui, XIN Yi, et al Robot tactile recognition system based on piezoelectric film sensor[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (4): 702- 710
[2]   蒋建东, 张玖利, 牛瑞征, 等 耦合弯曲-剪切载荷L型压电振子的低宽频特性[J]. 浙江大学学报: 工学版, 2021, 55 (1): 162- 168
JIANG Jiandong, ZHANG Jiuli, NIU Ruizheng, et al Low broadband characteristics of L-shaped piezoelectric cantilever beam with bending shear load[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (1): 162- 168
[3]   HONG S D, KIM K B, HWANG W, et al Enhanced energy-generation performance of a landfilled road-capable piezoelectric harvester to scavenge energy from passing vehicles[J]. Energy Conversion and Management, 2020, 215: 112900
[4]   ZHOU S, HOU L, WANG G, et al Ultrasound vibration energy harvesting from a rotary-type piezoelectric ultrasonic actuator[J]. Mechanical Systems and Signal Processing, 2023, 197: 110337
[5]   BOUHEDMA S, BIN TAUFIK J, LANGE F, et al Different scenarios of autonomous operation of an environmental sensor node using a piezoelectric-vibration-based energy harvester[J]. Sensors, 2024, 24 (4): 1338
[6]   何悦, 袁天辰, 杨俭, 等 基于MFC的压电振动能量采集器[J]. 电子科技, 2025, 38 (3): 16- 21
HE Yue, YUAN Tianchen, YANG Jian, et al Research on MFC-based piezoelectric vibration energy harvester[J]. Electronic Science and Technology, 2025, 38 (3): 16- 21
doi: 10.16180/j.cnki.issn1007-7820.2025.03.003
[7]   林琳, 王保志, 赖丽燕, 等 基于激光加工的阶梯梁式微压电振动能量采集器[J]. 微纳电子技术, 2022, 59 (11): 1169- 1176
LIN Lin, WANG Baozhi, LAI Liyan, et al Ladder-beam micro piezoelectric vibration energy harvester based on laser machining[J]. Micronanoelectronic Technology, 2022, 59 (11): 1169- 1176
[8]   费少华, 丁会明, 汪海晋, 等 基于超声引导的微细Z-pin植入系统[J]. 浙江大学学报: 工学版, 2023, 57 (4): 657- 665
FEI Shaohua, DING Huiming, WANG Haijin, et al Ultrasound-guided fine Z-pin insertion system[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (4): 657- 665
[9]   吕旖雯, 金妍, 高安然, 等 基于激光切割的叉指结构悬臂梁式压电振动能量采集器[J]. 微纳电子技术, 2023, 60 (7): 1086- 1093
LV Yiwen, JIN Yan, GAO Anran, et al Laser cutting based cantilever beam piezoelectric vibration energy harvester with interdigital structure[J]. Micronanoelectronic Technology, 2023, 60 (7): 1086- 1093
[10]   董可杰. 低频振动拱式压电能量采集器的设计与研究 [D]. 广州: 广州大学, 2023.
DONG Kejie. Design and research of low-frequency vibration arch piezoelectric energy harvester [D]. Guangzhou: Guangzhou University, 2023.
[11]   姜瑀, 宋芳, 熊玉仲 二次碰撞升频压电振动能采集器研究[J]. 农业装备与车辆工程, 2023, 61 (3): 70- 74
JIANG Yu, SONG Fang, XIONG Yuzhong Research on a secondary collision uplift piezoelectric vibration energy harvester[J]. Agricultural Equipment and Vehicle Engineering, 2023, 61 (3): 70- 74
doi: 10.3969/j.issn.1673-3142.2023.03.015
[12]   徐玮含, 罗安信, 马鑫宇, 等 基于惯性旋转结构的低频振动能量采集器研究[J]. 机械工程学报, 2022, 58 (20): 111- 119
XU Weihan, LUO Anxin, MA Xinyu, et al Research on energy harvester for low frequency vibration based on inertial rotary structure[J]. Journal of Mechanical Engineering, 2022, 58 (20): 111- 119
[13]   MA T, CAO H, SHI R, et al Research on piezoelectric vibration energy harvester for cutting part of roadheader[J]. Ferroelectrics, 2024, 618 (4): 1138- 1156
[14]   梁光胜, 李艺 风车型低频压电振动能量采集器的研究与设计[J]. 压电与声光, 2018, 40 (3): 423- 427
LIANG Guangsheng, LI Yi Research and design of low-frequency piezoelectric vibration energy harvester with windmill structure[J]. Piezoelectrics and Acoustooptics, 2018, 40 (3): 423- 427
doi: 10.11977/j.issn.1004-2474.2018.03.027
[15]   HE L, KURITA H, NARITA F Multimode auxetic piezoelectric energy harvester for low-frequency vibration[J]. Smart Material Structures, 2024, 33 (3): 035020
[16]   侯志伟, 陈仁文, 刘祥建. V型压电换能器的有限元分析与实验 [J]. 振动 测试与诊断, 2012, 32(6): 892–896, 1031–1032.
HOU Zhiwei, CHEN Renwen, LIU Xiangjian. Finite element analysis and experiment for V shape piezoelectric transducer [J]. Journal of Vibration, Measurement and Diagnosis, 2012, 32(6): 892–896, 1031–1032.
[17]   WANG Z L , SONG J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays [J]. Science, 2006, 312(5771): 242−246.
[18]   彭召洋, 宋芳, 熊玉仲 三稳态压电-电磁复合能量采集器性能研究[J]. 压电与声光, 2023, 45 (6): 872- 877
PENG Zhaoyang, SONG Fang, XIONG Yuzhong Research on a tristable piezoelectric-electromagnetic composite energy harvesters[J]. Piezoelectrics and Acoustooptics, 2023, 45 (6): 872- 877
doi: 10.11977/j.issn.1004-2474.2023.06.015
[19]   蒋春容, 薛鑫岩, 赵子龙, 等 环形行波超声波电机面接触分析及转子结构优化设计[J]. 电机与控制应用, 2023, 50 (5): 39- 45
JIANG Chunrong, XUE Xinyan, ZHAO Zilong, et al Surface contact analysis of ring type traveling wave ultrasonic motor and optimization of the rotor structure[J]. Electric Machines and Control Application, 2023, 50 (5): 39- 45
[20]   蒋春容, 赵子龙, 陆旦宏, 等 环形行波超声波电机动态接触摩擦特性建模与分析[J]. 电工技术学报, 2023, 38 (8): 2036- 2047
JIANG Chunrong, ZHAO Zilong, LU Danhong, et al Modeling and analysis on dynamic contact and friction characteristics of ring type traveling wave ultrasonic motors[J]. Transactions of China Electrotechnical Society, 2023, 38 (8): 2036- 2047
[21]   张艳军, 崔奕超, 雷美荣, 等 雾化夹心式压电超声换能器的理论设计[J]. 机械工程与自动化, 2024, (3): 78- 80
ZHANG Yanjun, CUI Yichao, LEI Meirong, et al Theoretical design of atomized sandwich piezoelectric ultrasonic transducer[J]. Mechanical Engineering and Automation, 2024, (3): 78- 80
doi: 10.3969/j.issn.1672-6413.2024.03.026
[22]   王虎. 电磁式振动能量采集器的设计及输出性能研究 [D]. 北京: 华北电力大学, 2023.
WANG Hu. Research on the design and output performance of electromagnetic vibration energy harvester [D]. Beijing: North China Electric Power University , 2023.
[23]   刘高峰. 非线性压电-电磁复合能量收集器 [D]. 秦皇岛: 燕山大学, 2022.
LIU Gaofeng. Nonlinear piezoelectric electromagnetic composite energy harvester [D]. Qinhuangdao: Yanshan University, 2022.
[24]   安金龙, 赵明, 岳文贺, 等 低频振动倍频电磁式发电装置设计及仿真研究[J]. 微电机, 2017, 50 (4): 6- 10
AN Jinlong, ZHAO Ming, YUE Wenhe, et al Design and simulation of low frequency vibration frequency multiplication electromagnetic generator[J]. Micromotors, 2017, 50 (4): 6- 10
[25]   杨俊斌, 宋芳, 申俊, 等 基于复合梁结构的压电-电磁能量收集器研究[J]. 传感技术学报, 2023, 36 (9): 1368- 1376
YANG Junbin, SONG Fang, SHEN Jun, et al Research on piezoelectric-electromagnetic energy harvester based on composite beam structure[J]. Chinese Journal of Sensors and Actuators, 2023, 36 (9): 1368- 1376
doi: 10.3969/j.issn.1004-1699.2023.09.005
[26]   周铄. 多功能压电超声换能器的有限元设计及其机电转换特性研究 [D]. 杭州: 浙江工商大学, 2023.
ZHOU Shuo. Finite element design and electromechanical conversion characteristics of multifunctional piezoelectric ultrasonic transducer [D]. Hangzhou: Zhejiang Gongshang University, 2023.
[1] Yaoping ZENG,Yueqiang LIU,Saishen GUAN,Weiwei JIANG,Yuting XIA. Computational offloading in D2D-MEC with energy harvesting[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(5): 967-978.
[2] Xiang-yu KONG,Ya-lin CHEN,Jia-yu LUO,Zhi-yan YANG. Fault detection method based on dynamic inner concurrent projection to latent structure[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1297-1306.
[3] Xin-tong ZHOU,Kun XIAO. Resource allocation algorithm for wireless energy harvesting cooperative network integrating uplink and downlink[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(12): 2544-2552.
[4] Chao-jun XUE,Hai-bo WANG,Yu-peng CHEN. Optimal design and experimental study of thrust adsorption wall-climbing robot[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1181-1190, 1198.
[5] Xiao-long WANG,Hai-feng LV,Jin-ying HUANG,Guang-pu LIU. Model-free feedforward/feedback control scheme for magnetorheological damper[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 873-878.
[6] Shuai-ling GAO,Jun-qiang XIA,Bo-liang DONG,Mei-rong ZHOU,Jing-ming HOU. Mathematical model for urban flooding with effect of drainage of street inlets[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 590-597.
[7] Tie ZHANG,Liang-liang HU,Yan-biao ZOU. Identification of improved friction model for robot based on hybrid genetic algorithm[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 801-809.
[8] Peng HU,Shao-yi DENG,Zi-xiong ZHAO,Zhi-xian CAO,Huai-han LIU,Zhi-guo HE. Hydro-sediment-morphodynamic modeling of riverbed evolution and calculation of dredging volume[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 733-741.
[9] Ze-sheng WANG,Yan-biao LI,Yi-qin LUO,Peng SUN,Bo CHEN,Hang ZHENG. Dynamic analysis of a 7-DOF redundant and hybrid mechanical arm[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1505-1515.
[10] Ying-long CHEN,Di YAN,Zeng-meng ZHANG,Da-yong NING,Yong-jun GONG. Static and dynamic characteristics of soft unit based on hydraulic straight drive[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1602-1609.
[11] Liang LV,Hong CHEN,Xun GONG,Hai-guang ZHAO,Yun-feng HU. Cooling system modeling and coolant temperature control for gasoline engine[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1119-1129.
[12] Fei FEI,Shen-yu LIU,Chang-cheng WU,De-hua YANG,Sheng-li ZHOU. Human kinetic energy harvesting technology based on magnetic levitation structure[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2215-2222.
[13] FU Xiao-yun, LEI Lei, YANG Gang, LI Bao-ren. Wing parameter configuration and steady motion analysis of water-jet hybrid glider[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(8): 1499-1508.
[14] ZHANG Tie, LIANG Xiao-hong. Kalman filter-based SCARA robot joint torque estimation[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(5): 951-959.
[15] XU Wen-shuai, YANG Lian-zhi, GAO Yang. Plane problems of 2D decagonal quasicrystals of piezoelectric effect with Griffith crack[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(3): 487-496.