|
|
Camouflaged object detection based on Convnextv2 and texture-edge guidance |
Jiarui FU1( ),Zhaofei LI1,2,3,*( ),Hao ZHOU1,Wei HUANG1 |
1. College of Automation and Information Engineering, Sichuan University of Science and Engineering, Yibin 644000, China 2. Intelligent Perception and Control Key Laboratory of Sichuan Province, Yibin 644000, China 3. Key Laboratory of Higher Education of Sichuan Province for Enterprise Informationalization and Internet of Things, Yibin 644000, China |
|
|
Abstract A camouflaged object detection method based on Convnextv2 and texture-edge guidance was proposed in order to address the issue of insufficient expression and processing of edge features of targets and unique texture feature information in corresponding scenarios in camouflaged object detection. The texture encoding module was used to extract texture features from input images, which were fused with the edge features extracted by the backbone network to generate texture-edge features of the images. The texture-edge features were integrated into the backbone features to locate the true position of the target through the designed texture-edge guided attention module. A feature fusion module was employed for multi-level feature fusion, and a multi-level supervision approach was adopted to design the overall loss function. Experiments on three public datasets (CAMO, COD10K, NC4K) and the camouflage mixed dataset MICAI_TE showed that the algorithm achieved optimal comprehensive performance.
|
Received: 08 August 2024
Published: 28 July 2025
|
|
Fund: 企业信息化与物联测控技术四川省重点实验室资助项目(2022WZJ02);自贡市重点科技计划资助项目(2019YYJC15);四川轻化工大学科研基金资助项目(2020RC32);四川轻化工大学研究生课程建设项目(AL202213,SZ202310);四川轻化工大学教学改革项目(2024KCSZ-ZY03,2024KCSZ-KC09,JG-24064). |
Corresponding Authors:
Zhaofei LI
E-mail: izayoisakur_ray@163.com;lizhaofei825@163.com
|
基于Convnextv2与纹理边缘引导的伪装目标检测
为了解决伪装目标检测中目标的边缘特征及对应场景下独特纹理特征信息表达处理不足的问题,提出基于Convnextv2与纹理边缘引导的伪装目标检测算法. 通过纹理编码模块在输入图片上提取纹理特征,与主干网络提取的边缘特征进行融合,生成图片的纹理-边缘特征. 通过设计的纹理边缘引导的注意力模块,将纹理-边缘特征融入主干特征以定位目标的真实位置. 利用特征融合模块进行多层次特征融合,采用多级监督的方式,设计总的损失函数. 在3个公开数据集CAMO、COD10K、NC4K和迷彩伪装混合数据集MICAI_TE上的实验表明,该算法的综合性能最优.
关键词:
伪装目标检测,
纹理边缘引导特征融合,
Convnextv2,
特征提取,
纹理边缘注意力机制
|
|
[1] |
张冬冬, 王春平, 付强 伪装目标检测研究进展[J]. 激光杂志, 2024, 45 (3): 1- 13 ZHANG Dongdong, WANG Chunping, FU Qiang Research developments in camouflage object detection[J]. Laser Journal, 2024, 45 (3): 1- 13
|
|
|
[2] |
SUN Y, CHEN G, ZHOU T, et al. Context-aware cross-level fusion network for camouflaged object detection [EB/OL]. [2025-05-29]. https://arxiv.org/abs/2105.12555.
|
|
|
[3] |
REN J, HU X, ZHU L, et al Deep texture-aware features for camouflaged object detection[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 33 (3): 1157- 1167
|
|
|
[4] |
JI G P, FAN D P, CHOU Y C, et al Deep gradient learning for efficient camouflaged object detection[J]. Machine Intelligence Research, 2023, 20 (1): 92- 108
doi: 10.1007/s11633-022-1365-9
|
|
|
[5] |
SUN Y, WANG S, CHEN C, et al. Boundary-guided camouflaged object detection [C]// International Joint Conference on Artificial Intelligence. Shenzhen: Morgan Kaufmann, 2022: 335-1341.
|
|
|
[6] |
CHEN Tianrun, ZHU Lanyun, DENG Chaotao, et al. SAM2-Adapter: evaluating and adapting segment anything 2 in downstream tasks: camouflage, shadow, medical image segmentation, and more [EB/OL]. [2024-10-19]. https://arxiv.org/abs/2408.04579.
|
|
|
[7] |
NIKHILA R, VALENTIN G, HU Y, et al. SAM 2: segment anything in images and videos [EB/OL]. [2024-10-19]. https://arxiv.org/abs/2408.00714.
|
|
|
[8] |
CHEN G, WANG H, CHEN K, et al A survey of the four pillars for small object detection: multiscale representation, contextual information, super-resolution, and region proposal[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 52 (2): 936- 953
|
|
|
[9] |
LIU Y, LI H, CHENG J, et al MSCAF-net: a general framework for camouflaged object detection via learning multi-scale context-aware features[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33 (9): 4934- 4947
doi: 10.1109/TCSVT.2023.3245883
|
|
|
[10] |
WOO S, DEBNATH S, HU R, et al. Convnext v2: co-designing and scaling convnets with masked autoencoders [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 16133-16142.
|
|
|
[11] |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
|
|
|
[12] |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale [EB/OL]. [2025-05-29]. https://arxiv.org/abs/2010.11929.
|
|
|
[13] |
WU Z, SU L, HUANG Q. Cascaded partial decoder for fast and accurate salient object detection [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 3907-3916.
|
|
|
[14] |
ZHAO J X, LIU J J, FAN D P, et al. EGNet: edge guidance network for salient object detection [C]// IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 8779-8788.
|
|
|
[15] |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module [C]// European Conference on Computer Vision. Munich: Springer, 2018: 3-19.
|
|
|
[16] |
MILLETARI F, NAVAB N, AHMADI S A. V-net: fully convolutional neural networks for volumetric medical image segmentation [C]// International Conference on 3D Vision. California: IEEE, 2016: 565-571.
|
|
|
[17] |
LE T N, NGUYEN T V, NIE Z, et al Anabranch network for camouflaged object segmentation[J]. Computer Vision and Image Understanding, 2019, 184: 45- 56
doi: 10.1016/j.cviu.2019.04.006
|
|
|
[18] |
FAN D P, JI G P, SUN G, et al. Camouflaged object detection [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 2777-2787.
|
|
|
[19] |
LV Y, ZHANG J, DAI Y, et al. Simultaneously localize, segment and rank the camouflaged objects [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 11591-11601.
|
|
|
[20] |
FAN D P, JI G P, CHENG M M, et al Concealed object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44 (10): 6024- 6042
|
|
|
[21] |
XING H, GAO S, WANG Y, et al Go closer to see better: camouflaged object detection via object area amplification and figure-ground conversion[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33 (10): 5444- 5457
doi: 10.1109/TCSVT.2023.3255304
|
|
|
[22] |
JIA Q, YAO S, LIU Y, et al. Segment, magnify and reiterate: detecting camouflaged objects the hard way [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 4713-4722.
|
|
|
[23] |
SONG Z, KANG X, WEI X, et al Fsnet: focus scanning network for camouflaged object detection[J]. IEEE Transactions on Image Processing, 2023, 32: 2267- 2278
doi: 10.1109/TIP.2023.3266659
|
|
|
[24] |
HU X, WANG S, QIN X, et al. High-resolution iterative feedback network for camouflaged object detection [C]// AAAI Conference on Artificial Intelligence. Washington: AAAI, 2023, 37(1): 881-889.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|