|
|
Short term load forecasting based on recombination quadratic decomposition and LSTNet-Atten |
Hongwei LIU1,2( ),Lei WANG2,*( ),Yang LIU1,2,Pengchao ZHANG2,Shi QIAO3 |
1. School of Electrical Engineering, Shanxi University of Technology, Hanzhong 723001, China 2. Key Laboratory of Industrial Automation, Shanxi University of Technology, Hanzhong 723001, China 3. Jinzhong Power Supply Company, State Grid Shanxi Electric Power Company, Jinzhong 030600, China |
|
|
Abstract A short-term load forecasting method based on restructured second modal decomposition and LSTNet-Atten was proposed in order to address the issues of high randomness and volatility in power load data, as well as the relatively low prediction accuracy. Complete ensemble empirical mode decomposition with adaptive white noise was employed for the preliminary decomposition of the load sequence during the data preprocessing phase. Then the randomness and volatility of the original signal was reduced. Similar subsequences were reorganized and aggregated based on their sample entropy values. Variational modal decomposition was applied to further decompose the components with higher complexity obtained from the reorganization in the feature engineering phase. The correlation between input influencing factors and load data was evaluated by using Pearson, Spearman, and maximum information coefficient methods, while evidence theory was utilized to optimize the feature dimensions of the input data. The LSTNet-Atten forecasting model was reconstructed in the model construction phase. Convolutional modules were used to mine local dependencies within sequences, while recurrent and skip recurrent modules extract both long-term and short-term features from the data to enhance its predictability. The autoregressive module was used to enhance the ability of the neural network to recognize linear features and improve the predictive performance of the model. More weight was given to important features by increasing temporal attention in order to achieve the capture of global and local connections. Experimental results on a Valencia regional load dataset indicate that the proposed method reduces sequence prediction error by up to 66.69% compared with other classical deep learning models with a 5.04% increase in fitting coefficient, demonstrating higher prediction accuracy and robustness.
|
Received: 27 May 2024
Published: 25 April 2025
|
|
Fund: 国家自然科学基金资助项目(62176146);国家社会科学基金西部项目(21XTY012);陕西理工大学研究生创新基金资助项目(SLGYCX2405). |
Corresponding Authors:
Lei WANG
E-mail: 2496619314@qq.com;wanglei_sut@163.com
|
基于重组二次分解及LSTNet-Atten的短期负荷预测
针对电力负荷数据随机性强、波动性大,预测精度较低的问题,提出基于重组二次分解及LSTNet-Atten的短期负荷预测方法. 在数据预处理阶段,采用自适应白噪声的完全集合经验模态分解对负荷序列进行初步分解,降低原始信号的随机性和波动性. 根据子序列的样本熵值,将相似的子序列重组聚合. 在特征工程阶段,采用变分模态分解对重组得到的复杂度较高的分量进行再次分解,通过皮尔逊、斯皮尔曼、最大信息系数方法评估输入影响因素与负荷数据之间的相关性,利用证据理论优化输入数据的特征维度. 在模型构建阶段,重构LSTNet-Atten预测模型,采用卷积模块挖掘序列的局部依赖关系,通过循环和循环跳过模块提取数据的长短期特征,提高数据本身的可预测性. 利用自回归模块增强神经网络对线性特征的识别能力,提高模型的预测性能. 增加时间注意力赋予重要特征更多的权重,实现全局与局部联系的捕获. 在瓦伦西亚区域级负荷数据集上的实验结果表明,与其他经典的深度学习模型相比,所提方法的序列预测误差最高降低了66.69%,拟合系数提高了5.04%,预测精度和鲁棒性更高.
关键词:
短期负荷预测,
二次分解,
样本熵,
LSTNet,
证据理论,
敏感特征因子筛选,
注意力机制
|
|
[1] |
乔石, 王磊, 张鹏超, 等 基于模态分解及注意力机制长短时间网络的短期负荷预测[J]. 电网技术, 2022, 46 (10): 3940- 3951 QIAO Shi, WANG Lei, ZHANG Pengchao, et al Short-term load forecasting by long-and short-term temporal networks with attention based on modal decomposition[J]. Power System Technology, 2022, 46 (10): 3940- 3951
|
|
|
[2] |
HU Y, LI J, HONG M, et al Industrial artificial intelligence based energy management system: Integrated framework for electricity load forecasting and fault prediction[J]. Energy, 2022, 244 (4): 123195
|
|
|
[3] |
韩富佳, 王晓辉, 乔骥, 等 基于人工智能技术的新型电力系统负荷预测研究综述[J]. 中国电机工程学报, 2023, 43 (22): 8569- 8592 HAN Fujia, WANG Xiaohui, QIAO Ji, et al Review on artificial intelligence based load forecasting research for the new-type power system[J]. Proceedings of the CSEE, 2023, 43 (22): 8569- 8592
|
|
|
[4] |
BO H, JIAN X, ZUO X X, et al Short-term combined forecasting method of park load based on CEEMD-MLR-LSSVR-SBO[J]. Energies, 2022, 15 (8): 2767
doi: 10.3390/en15082767
|
|
|
[5] |
DUDEK G, PELKA P, SMYL S A hybrid residual dilated LSTM and exponential smoothing model for midterm electric load forecasting[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 33 (7): 2879- 2891
|
|
|
[6] |
FAN G F, ZHANG L Z, YU M, et al Applications of random forest in multivariable response surface for short-term load forecasting[J]. International Journal of Electrical Power and Energy Systems, 2022, 139 (7): 108073- 108079
|
|
|
[7] |
ALVAREZ V, MAZUELAS S, LOZANO J A, et al Probabilistic load forecasting based on adaptive online learning[J]. IEEE Transactions on Power Systems, 2021, 36 (4): 3668- 3680
doi: 10.1109/TPWRS.2021.3050837
|
|
|
[8] |
ALRASHIDI A, QAMAR M A Data-driven load forecasting using machine learning and meteorological data[J]. Computer Systems Science and Engineering, 2023, 44 (3): 1973- 1988
doi: 10.32604/csse.2023.024633
|
|
|
[9] |
TANG X, DAI Y, LIU Q, et al Application of bidirectional recurrent neural network combined with deep belief network in short-term load forecasting[J]. IEEE Access, 2019, 7 (1): 160660- 160670
|
|
|
[10] |
陆继翔, 张琪培, 杨志宏, 等 基于CNN-LSTM混合神经网络模型的短期负荷预测方法[J]. 电力系统自动化, 2019, 43 (8): 131- 137 LU Jixiang, ZHANG Qipei, YANG Zhihong, et al Short-term load forecasting method based on CNN-LSTM hybrid neural network model[J]. Automation of Electric Power Systems, 2019, 43 (8): 131- 137
|
|
|
[11] |
黄炜, 陈田, 吴入军 基于门控循环单元与误差修正的短期负荷预测[J]. 浙江大学学报: 工学版, 2021, 55 (9): 1625- 1633 HUANG Wei, CHEN Tian, WU Rujun Short-term load forecasting based on gated cycle unit with error correction[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (9): 1625- 1633
|
|
|
[12] |
李文武, 张鹏宇, 石强, 等 基于聚合混合模态分解和时序卷积神经网络的综合能源系统负荷修正预测[J]. 电网技术, 2022, 46 (9): 3345- 3357 LI Wenwu, ZHANG Pengyu, SHI Qiang, et al Correction prediction of integrated energy system load based on aggregated mixed mode decomposition and TCN[J]. Power System Technology, 2022, 46 (9): 3345- 3357
|
|
|
[13] |
MOHAN N, SOMAN K P, KUMAR S S A data-driven strategy for short-term electric load forecasting using dynamic mode decomposition model[J]. Applied Energy, 2018, 232 (12): 229- 244
|
|
|
[14] |
臧海祥, 陈玉伟, 程礼临, 等 基于多尺度分量特征学习的用户级超短期负荷预测[J]. 电网技术, 2024, 48 (6): 2584- 2592 ZANG Haixiang, CHEN Yuwei, CHENG Lilin, et al User-level ultra-short-term load forecasting based on multi-scale component feature learning[J]. Power System Technology, 2024, 48 (6): 2584- 2592
|
|
|
[15] |
常雨芳, 杨子潇, 潘风, 等 基于CEEMDAN-PE-WPD和多目标优化的超短期风电功率预测方法[J]. 电网技术, 2023, 47 (12): 5015- 5026 CHANG Yufang, YANG Zixiao, PAN Feng, et al Ultra-short-term wind power prediction method based on CEEMDAN-PE-WPD and multi-objective optimization[J]. Power System Technology, 2023, 47 (12): 5015- 5026
|
|
|
[16] |
陈锦鹏, 胡志坚, 陈纬楠, 等 二次模态分解组合DBiLSTM-MLR的综合能源系统负荷预测[J]. 电力系统自动化, 2021, 45 (13): 85- 94 CHEN Jinpeng, HU Zhijian, CHEN Weinan, et al Integrated energy system load forecasting by combined DBiLSTM-MLR with quadratic modal decomposition[J]. Power System Automation, 2021, 45 (13): 85- 94
|
|
|
[17] |
XU Weifeng, LIU Pan, CHENG Lei, et al Multi-step wind speed prediction by combining a WRF simulation and an error correction strategy[J]. Renewable Energy, 2021, 163 (1): 772- 782
|
|
|
[18] |
张明辉, 周亚同, 孔晓然 基于深度混合储备池计算模型的短期电力负荷预测[J]. 电网技术, 2022, 46 (12): 4751- 4762 ZHANG Minghui, ZHOU Yatong, KONG Xiaoran Short-term electrical load prediction based on deep hybrid reservoir calculation model[J]. Power System Technology, 2022, 46 (12): 4751- 4762
|
|
|
[19] |
吉兴全, 赵国航, 叶平峰, 等 基于QMD-HBiGRU的短期光伏功率预测方法[J]. 高电压技术, 2024, 50 (9): 3850- 3859 JI Xingquan, ZHAO Guohang, YE Pingfeng, et al Short-term PV power prediction method based on QMD-HBiGRU[J]. High Voltage Technology, 2024, 50 (9): 3850- 3859
|
|
|
[20] |
张淑清, 李君, 姜安琦, 等 基于FPA-VMD和BiLSTM神经网络的新型两阶段短期电力负荷预测[J]. 电网技术, 2022, 46 (8): 3269- 3279 ZHANG Shuqing, LI Jun, JIANG Anqi, et al A novel two-stage model based on FPA-VMD and BiLSTM neural network for short-term power load forecasting[J]. Power System Technology, 2022, 46 (8): 3269- 3279
|
|
|
[21] |
YU F, WANG L, JIANG Q Y, et al Self-attention-based short-term load forecasting considering demand-side management[J]. Energies, 2022, 15 (12): 4198- 4216
doi: 10.3390/en15124198
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|