|
|
Oriented ship detection algorithm in SAR image based on improved YOLOv5 |
Yali XUE1( ),Yiming HE1,Shan CUI2,Quan OUYANG1 |
1. College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China 2. Shanghai Electro-Mechanical Engineering Institute, Shanghai 201109, China |
|
|
Abstract A novel detection algorithm (efficient multi-scale attention (EMA) and small object detection based on YOLOv5, ES-YOLOv5) was proposed by targeting small ship targets in SAR scenes aiming at the issues of inconspicuous imaging features and low detection accuracy caused by arbitrary orientation of small targets in synthetic aperture radar (SAR) imaging. A small target detection layer was added to adjust the receptive field size, making it more suitable for capturing small target scale features and facilitating multi-scale fusion. An EMA mechanism was introduced to focus on key target information and enhance feature representation capability. The circular smooth label (CSL) technique was utilized to adapt to the periodicity of angles, achieving high-precision angle classification. The experimental results demonstrate that the proposed method achieves an average detection accuracy of 90.9% at an intersection over union (IoU) threshold of 0.5 on the RSDD-SAR dataset. The algorithm outperforms the baseline algorithm YOLOv5 by 6% in improving the precision of detecting small SAR ship targets, significantly enhancing the model’s detection performance.
|
Received: 13 March 2024
Published: 11 February 2025
|
|
Fund: 国家自然科学基金资助项目(62073164);国家重点研发计划资助项目(2023YFB3907703);上海航天科技创新基金资助项目(SAST2022-013). |
基于改进YOLOv5的SAR图像有向舰船目标检测算法
针对合成孔径雷达 (SAR) 小目标成像特征不显著、目标具有任意朝向易出现漏检、检测精度较低的问题,提出面向SAR舰船小目标的ES-YOLOv5检测算法. 添加小目标检测层调整感受野大小,更适应小目标尺度特征,方便进行多尺度融合. 引入EMA注意力机制重点关注目标关键信息,强化特征的表达能力. 使用圆平滑标签(CSL)技术适应角度的周期性,实现了对角度的高精度分类. 实验结果表明,在RSDD-SAR数据集上,该方法在交并比阈值为0.5时的平均检测精度达到90.9%,在提高SAR舰船小目标检测精度方面比基准算法YOLOv5提高了6%,显著改善了模型的检测性能.
关键词:
合成孔径雷达(SAR),
舰船图像,
旋转检测,
注意力机制,
YOLOv5
|
|
[1] |
XING X W, CHEN Z L, ZOU H X, et al. A fast algorithm based on two-stage CFAR for detecting ships in SAR images [C]// Asian-Pacific Conference on Synthetic Aperture Radar . Xi'an: IEEE, 2009: 506-509.
|
|
|
[2] |
范晋祥, 刘益吉, 李宁, 等 精确打击体系智能化的发展[J]. 空天防御, 2023, 6 (4): 1- 11 FAN Jinxiang, LIU Yiji, LI Ning, et al Development of the intelligentization of precision strike system of systems[J]. Air and Space Defense, 2023, 6 (4): 1- 11
doi: 10.3969/j.issn.2096-4641.2023.04.001
|
|
|
[3] |
张天文. 基于深度学习的SAR图像舰船检测及识别技术研究[D]. 成都: 电子科技大学, 2022. ZHANG Tianwen. Research on deep learning-based SAR ship detection and recognition technology [D]. Chengdu: University of Electronic Science and Technology of China, 2022.
|
|
|
[4] |
田东. 基于卷积神经网络的深度学习算法研究与实现[D]. 上海: 上海交通大学, 2017. TIAN Dong. Design and implementation of deep learning algorithm based on convolutional neural network [D]. Shanghai: Shanghai Jiao Tong University, 2017.
|
|
|
[5] |
王昌安. 遥感影像中的近岸舰船目标检测和细粒度识别方法研究[D]. 武汉: 华中科技大学, 2019. WANG Changan. Detection and fine-grained recognition of inshore ships on optical remote sensing images [D]. Wuhan: Huazhong University of Science and Technology, 2019.
|
|
|
[6] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E Imagenet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2017, 60 (6): 84- 90
|
|
|
[7] |
高云龙, 任明, 吴川, 等. 基于注意力机制改进的无锚框SAR图像舰船检测模型[EB/OL]. [2024-10-10]. https://doi.org/10.13229/ j.cnki.jdxbgxb20221367.
|
|
|
[8] |
YASIR M, LIU Shanwei, XU Mingming, et al. Multi scale ship target detection using SAR images based on improved Yolov5[J]. Frontiers in Marine Science, 2023, 9: 2296- 7745
|
|
|
[9] |
富强, 杨威, 陈杰, 等 基于YOLOv5的近岸SAR舰船目标检测方法[J]. 上海航天(中英文), 2022, 39 (3): 67- 76 FU Qiang, YANG Wei, CHEN Jie, et al Detection method for nearshore SAR ship images based on YOLOv5[J]. Aerospace Shanghai (Chinese and English), 2022, 39 (3): 67- 76
|
|
|
[10] |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132-7141.
|
|
|
[11] |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module [C]// European Conference on Computer Vision . Munich: Springer, 2018: 3-19.
|
|
|
[12] |
HE Yishan, GAO Fei, WANG Jun, et al Learning polar encodings for arbitrary-oriented ship detection in SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 3846- 3859
doi: 10.1109/JSTARS.2021.3068530
|
|
|
[13] |
SUN Yuanrui, SUN Xian, WANG Zhirui, et al Oriented ship detection based on strong scattering points network in large-scale SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1- 18
|
|
|
[14] |
徐丰, 王海鹏, 金亚秋. 合成孔径雷达图像智能解译[M]. 北京: 科学出版社, 2020: 143-167.
|
|
|
[15] |
OUYANG Daliang, HE Su, ZHANG Guozhong, et al. Efficient multi-scale attention module with cross-spatial learning [C]// International Conference on Acoustics . Rhodes Island: IEEE, 2023: 1-5.
|
|
|
[16] |
YANG Xue, YAN Junchi On the arbitrary-oriented object detection: classification based approaches revisited[J]. International Journal of Computer Vision, 2022, 130 (5): 1340- 1365
doi: 10.1007/s11263-022-01593-w
|
|
|
[17] |
徐从安, 苏航, 李健伟, 等 RSDD-SAR: SAR舰船斜框检测数据集[J]. 雷达学报, 2022, 11 (4): 581- 599 XU Congan, SU Hang, LI Jianwei, et al RSDD-SAR: rotated ship detection dataset in SAR images[J]. Journal of Radars, 2022, 11 (4): 581- 599
doi: 10.12000/JR22007
|
|
|
[18] |
ZHANG Tianwen, ZHANG Xiaoling, LI Jianwei, et al SAR ship detection dataset (SSDD): official release and comprehensive data analysis[J]. Remote Sensing, 2021, 13 (18): 3690
doi: 10.3390/rs13183690
|
|
|
[19] |
TIAN Zhi, SHEN Chunhua, CHEN Hao, et al. FCOS: fully convolutional one-stage object detection [C]// IEEE/CVF International Conference on Computer Vision . Seoul: IEEE, 2019: 9626-9635.
|
|
|
[20] |
YI Jingru, WU Pengxiang, LIU Bo, et al. Oriented object detection in aerial images with box boundary-aware vectors [C]// IEEE Winter Conference on Applications of Computer Vision . Waikoloa: IEEE, 2021: 2149-2158.
|
|
|
[21] |
XIE Xingxing, CHENG Gong, WANG Jiabao, et al. Oriented R-CNN for object detection [C]// IEEE/CVF International Conference on Computer Vision . Montreal: IEEE, 2021: 3520-3529.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|