Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (2): 261-268    DOI: 10.3785/j.issn.1008-973X.2025.02.004
    
Oriented ship detection algorithm in SAR image based on improved YOLOv5
Yali XUE1(),Yiming HE1,Shan CUI2,Quan OUYANG1
1. College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
2. Shanghai Electro-Mechanical Engineering Institute, Shanghai 201109, China
Download: HTML     PDF(2761KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A novel detection algorithm (efficient multi-scale attention (EMA) and small object detection based on YOLOv5, ES-YOLOv5) was proposed by targeting small ship targets in SAR scenes aiming at the issues of inconspicuous imaging features and low detection accuracy caused by arbitrary orientation of small targets in synthetic aperture radar (SAR) imaging. A small target detection layer was added to adjust the receptive field size, making it more suitable for capturing small target scale features and facilitating multi-scale fusion. An EMA mechanism was introduced to focus on key target information and enhance feature representation capability. The circular smooth label (CSL) technique was utilized to adapt to the periodicity of angles, achieving high-precision angle classification. The experimental results demonstrate that the proposed method achieves an average detection accuracy of 90.9% at an intersection over union (IoU) threshold of 0.5 on the RSDD-SAR dataset. The algorithm outperforms the baseline algorithm YOLOv5 by 6% in improving the precision of detecting small SAR ship targets, significantly enhancing the model’s detection performance.



Key wordssynthetic aperture radar (SAR)      ship image      rotated detection      attention mechanism      YOLOv5     
Received: 13 March 2024      Published: 11 February 2025
CLC:  TP 391  
Fund:  国家自然科学基金资助项目(62073164);国家重点研发计划资助项目(2023YFB3907703);上海航天科技创新基金资助项目(SAST2022-013).
Cite this article:

Yali XUE,Yiming HE,Shan CUI,Quan OUYANG. Oriented ship detection algorithm in SAR image based on improved YOLOv5. Journal of ZheJiang University (Engineering Science), 2025, 59(2): 261-268.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.02.004     OR     https://www.zjujournals.com/eng/Y2025/V59/I2/261


基于改进YOLOv5的SAR图像有向舰船目标检测算法

针对合成孔径雷达 (SAR) 小目标成像特征不显著、目标具有任意朝向易出现漏检、检测精度较低的问题,提出面向SAR舰船小目标的ES-YOLOv5检测算法. 添加小目标检测层调整感受野大小,更适应小目标尺度特征,方便进行多尺度融合. 引入EMA注意力机制重点关注目标关键信息,强化特征的表达能力. 使用圆平滑标签(CSL)技术适应角度的周期性,实现了对角度的高精度分类. 实验结果表明,在RSDD-SAR数据集上,该方法在交并比阈值为0.5时的平均检测精度达到90.9%,在提高SAR舰船小目标检测精度方面比基准算法YOLOv5提高了6%,显著改善了模型的检测性能.


关键词: 合成孔径雷达(SAR),  舰船图像,  旋转检测,  注意力机制,  YOLOv5 
Fig.1 Architecture of ES-YOLOv5
锚框尺寸特征图大小
$ (4 \times 5)(8 \times 10)(22 \times 18) $$160 \times 160$
$ (10 \times 13)(16 \times 30)(33 \times 23) $$80 \times 80$
$ (30 \times 61)(62 \times 45)(59 \times 119) $$40 \times 40$
$ (116 \times 90)(156 \times 198)(373 \times 326) $$20 \times 20$
Tab.1 Anchor size of ES-YOLOv5 network
Fig.2 Structure of EMA module
Fig.3 Definition of rotated bounding box
Fig.4 Circular smoothing label
预测类别真实类别
正样本负样本
正样本${\mathrm{TP}}$${\mathrm{FP}}$
负样本${\mathrm{FN}}$${\mathrm{TN}}$
Tab.2 Confusion matrix for binary classification result
网络类型$P$/%$R$/%${\mathrm{A}}{{\mathrm{P}}_{50}}$/%
A79.579.580.4
B89.884.790.9
Tab.3 Detection result of network A and B
模型$P$/%$R$/%${\mathrm{A}}{{\mathrm{P}}_{50}}$/%
Rotated FCOS86.684.386.5
Oriented RCNN84.982.688.6
BBAVectors85.883.689.1
FADet94.394.790.8
本文方法89.884.790.9
Tab.4 Experimental result of different algorithm on RSDD-SAR dataset
Fig.5 P-R curve of different algorithm on RSDD-SAR dataset
小目标检测层EMA$P$/%$R$/%${\mathrm{A}}{{\mathrm{P}}_{50}}$/%
88.980.684.9
79.384.186.4
72.075.068.2
89.884.790.9
Tab.5 Analysis of ablation experiment
Fig.6 Visual comparison of algorithmic performance with different detection module
[1]   XING X W, CHEN Z L, ZOU H X, et al. A fast algorithm based on two-stage CFAR for detecting ships in SAR images [C]// Asian-Pacific Conference on Synthetic Aperture Radar . Xi'an: IEEE, 2009: 506-509.
[2]   范晋祥, 刘益吉, 李宁, 等 精确打击体系智能化的发展[J]. 空天防御, 2023, 6 (4): 1- 11
FAN Jinxiang, LIU Yiji, LI Ning, et al Development of the intelligentization of precision strike system of systems[J]. Air and Space Defense, 2023, 6 (4): 1- 11
doi: 10.3969/j.issn.2096-4641.2023.04.001
[3]   张天文. 基于深度学习的SAR图像舰船检测及识别技术研究[D]. 成都: 电子科技大学, 2022.
ZHANG Tianwen. Research on deep learning-based SAR ship detection and recognition technology [D]. Chengdu: University of Electronic Science and Technology of China, 2022.
[4]   田东. 基于卷积神经网络的深度学习算法研究与实现[D]. 上海: 上海交通大学, 2017.
TIAN Dong. Design and implementation of deep learning algorithm based on convolutional neural network [D]. Shanghai: Shanghai Jiao Tong University, 2017.
[5]   王昌安. 遥感影像中的近岸舰船目标检测和细粒度识别方法研究[D]. 武汉: 华中科技大学, 2019.
WANG Changan. Detection and fine-grained recognition of inshore ships on optical remote sensing images [D]. Wuhan: Huazhong University of Science and Technology, 2019.
[6]   KRIZHEVSKY A, SUTSKEVER I, HINTON G E Imagenet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2017, 60 (6): 84- 90
[7]   高云龙, 任明, 吴川, 等. 基于注意力机制改进的无锚框SAR图像舰船检测模型[EB/OL]. [2024-10-10]. https://doi.org/10.13229/ j.cnki.jdxbgxb20221367.
[8]   YASIR M, LIU Shanwei, XU Mingming, et al. Multi scale ship target detection using SAR images based on improved Yolov5[J]. Frontiers in Marine Science, 2023, 9: 2296- 7745
[9]   富强, 杨威, 陈杰, 等 基于YOLOv5的近岸SAR舰船目标检测方法[J]. 上海航天(中英文), 2022, 39 (3): 67- 76
FU Qiang, YANG Wei, CHEN Jie, et al Detection method for nearshore SAR ship images based on YOLOv5[J]. Aerospace Shanghai (Chinese and English), 2022, 39 (3): 67- 76
[10]   HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132-7141.
[11]   WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module [C]// European Conference on Computer Vision . Munich: Springer, 2018: 3-19.
[12]   HE Yishan, GAO Fei, WANG Jun, et al Learning polar encodings for arbitrary-oriented ship detection in SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 3846- 3859
doi: 10.1109/JSTARS.2021.3068530
[13]   SUN Yuanrui, SUN Xian, WANG Zhirui, et al Oriented ship detection based on strong scattering points network in large-scale SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1- 18
[14]   徐丰, 王海鹏, 金亚秋. 合成孔径雷达图像智能解译[M]. 北京: 科学出版社, 2020: 143-167.
[15]   OUYANG Daliang, HE Su, ZHANG Guozhong, et al. Efficient multi-scale attention module with cross-spatial learning [C]// International Conference on Acoustics . Rhodes Island: IEEE, 2023: 1-5.
[16]   YANG Xue, YAN Junchi On the arbitrary-oriented object detection: classification based approaches revisited[J]. International Journal of Computer Vision, 2022, 130 (5): 1340- 1365
doi: 10.1007/s11263-022-01593-w
[17]   徐从安, 苏航, 李健伟, 等 RSDD-SAR: SAR舰船斜框检测数据集[J]. 雷达学报, 2022, 11 (4): 581- 599
XU Congan, SU Hang, LI Jianwei, et al RSDD-SAR: rotated ship detection dataset in SAR images[J]. Journal of Radars, 2022, 11 (4): 581- 599
doi: 10.12000/JR22007
[18]   ZHANG Tianwen, ZHANG Xiaoling, LI Jianwei, et al SAR ship detection dataset (SSDD): official release and comprehensive data analysis[J]. Remote Sensing, 2021, 13 (18): 3690
doi: 10.3390/rs13183690
[19]   TIAN Zhi, SHEN Chunhua, CHEN Hao, et al. FCOS: fully convolutional one-stage object detection [C]// IEEE/CVF International Conference on Computer Vision . Seoul: IEEE, 2019: 9626-9635.
[20]   YI Jingru, WU Pengxiang, LIU Bo, et al. Oriented object detection in aerial images with box boundary-aware vectors [C]// IEEE Winter Conference on Applications of Computer Vision . Waikoloa: IEEE, 2021: 2149-2158.
[21]   XIE Xingxing, CHENG Gong, WANG Jiabao, et al. Oriented R-CNN for object detection [C]// IEEE/CVF International Conference on Computer Vision . Montreal: IEEE, 2021: 3520-3529.
[1] Qingdong RAN,Lixin ZHENG. Defect detection method of lithium battery electrode based on improved YOLOv5[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(9): 1811-1821.
[2] Lingjia ZHANG,Xinlei ZHOU,Yueping XU,Yenming CHIANG. Analysis of inundation from social media based on integrated YOLOv5 and Mask-RCNN model[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(9): 1822-1831.
[3] Canlin LI,Xinyue WANG,Lizhuang MA,Zhiwen SHAO,Wenjiao ZHANG. Image cartoonization incorporating attention mechanism and structural line extraction[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(8): 1728-1737.
[4] Zhongliang LI,Qi CHEN,Lin SHI,Chao YANG,Xianming ZOU. Dynamic knowledge graph completion of temporal aware combination[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(8): 1738-1747.
[5] Shuhan WU,Dan WANG,Yuanfang CHEN,Ziyu JIA,Yueqi ZHANG,Meng XU. Attention-fused filter bank dual-view graph convolution motor imagery EEG classification[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(7): 1326-1335.
[6] Xianwei MA,Chaohui FAN,Weizhi NIE,Dong LI,Yiqun ZHU. Robust fault diagnosis method for failure sensors[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(7): 1488-1497.
[7] Jun YANG,Chen ZHANG. Semantic segmentation of 3D point cloud based on boundary point estimation and sparse convolution neural network[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1121-1132.
[8] Yuntang LI,Hengjie LI,Kun ZHANG,Binrui WANG,Shanyue GUAN,Yuan CHEN. Recognition of complex power lines based on novel encoder-decoder network[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1133-1141.
[9] Cuiting WEI,Weijian ZHAO,Bochao SUN,Yunyi LIU. Intelligent rebar inspection based on improved Mask R-CNN and stereo vision[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(5): 1009-1019.
[10] Yi LIU,Yidan CHEN,Lin GAO,Jiao HONG. Lightweight road extraction model based on multi-scale feature fusion[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(5): 951-959.
[11] Zhiwei XING,Shujie ZHU,Biao LI. Airline baggage feature perception based on improved graph convolutional neural network[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(5): 941-950.
[12] Hai HUAN,Yu SHENG,Chenxi GU. Global guidance multi-feature fusion network based on remote sensing image road extraction[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(4): 696-707.
[13] Mingjun SONG,Wen YAN,Yizhao DENG,Junran ZHANG,Haiyan TU. Light-weight algorithm for real-time robotic grasp detection[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(3): 599-610.
[14] Xinhua YAO,Tao YU,Senwen FENG,Zijian MA,Congcong LUAN,Hongyao SHEN. Recognition method of parts machining features based on graph neural network[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(2): 349-359.
[15] Yaolian SONG,Can WANG,Dayan LI,Xinyi LIU. UAV small target detection algorithm based on improved YOLOv5s[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(12): 2417-2426.