|
|
Analysis of inundation from social media based on integrated YOLOv5 and Mask-RCNN model |
Lingjia ZHANG( ),Xinlei ZHOU,Yueping XU,Yenming CHIANG*( ) |
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China |
|
|
Abstract Due to the lack of empirical inundation data, a novel method was explored for extracting flood inundation information from social media uploads using social media and deep learning technologies, addressing the need for urban area inundation depth measurement data. Firstly, the image segmentation model based on the YOLOv5 and Mask-RCNN was constructed and the identification dataset of various key parts of vehicles was constructed. A novel method for extracting the inundation height during urban flooding events was proposed according to the model training results. By inputting inundation images, the prediction of submerged locations and depths in urban inundation was conducted. These predictions were then compared with the data obtained from the inundation recurrence model. A validation dataset was formed by conducting the simulated inundation experiments, to verify the feasibility of the proposed model. Results showed that the Nash efficiency coefficient of the proposed model was 0.98. Moreover, the social media images from the actual urban flooding during the "7·20" event in Zhengzhou City were used to verify the reliability of the proposed model. Results showed that the proposed method can provide an effective data source for the process of urban inundation.
|
Received: 03 December 2023
Published: 30 August 2024
|
|
Fund: 浙江省重点研发计划资助项目(2021C03017) ;浙江省自然基金重点研究资助项目(LZ20E090001). |
Corresponding Authors:
Yenming CHIANG
E-mail: 22312102@zju.edu.cn;chiangym@zju.edu.cn
|
基于YOLOv5和Mask-RCNN组合模型的社交媒体内涝灾害分析
由于缺少淹没实测数据,针对城市市区淹没深度测量数据需求,基于社交媒体与深度学习技术,探索根据社交媒体用户上传信息提取洪水淹没信息的新方法. 研发基于YOLOv5与Mask-RCNN组合模型的实例分割算法,制作轿车众多关键部位的识别数据集. 根据模型训练结果实现全新的市区淹没事件的淹没高度提取方法. 通过输入淹没图像对城市内涝中淹没点位与淹没深度进行预测,与淹没重演模型得到的数据进行比较. 基于模拟淹没实验来制作验证数据集,验证该方法的可行性. 结果表明,所研发的YOLOv5 与 Mask-RCNN组合模型的纳什效率系数为0.98. 使用郑州市“7·20”城市内涝的实际社交媒体图像进行可靠性验证. 结果表明,所提方法能够为城市市区内涝淹没过程提供有效数据来源.
关键词:
城市内涝,
社交媒体,
YOLOv5,
Mask-RCNN,
水深提取,
图像识别
|
|
[20] |
章卫军, 廖青桃, 杨森, 等 从郑州“2021.7. 20”水灾模型推演看城市洪涝风险管理[J]. 中国防汛抗旱, 2021, 31 (9): 1- 4 ZHANG Weijun, LIAO Qingtao, YANG Sen, et al Thoughts and inspirations: urban flood risk management inferred from Zhengzhou flood model[J]. China Flood and Drought Management, 2021, 31 (9): 1- 4
|
|
|
[1] |
李莹, 赵珊珊 2001—2020年中国洪涝灾害损失与致灾危险性研究[J]. 气候变化研究进展, 2022, 18 (2): 154- 165 LI Ying, ZHAO Shanshan Floods losses and hazards in China from 2001 to 2020[J]. Climate Change Research, 2022, 18 (2): 154- 165
|
|
|
[2] |
新华社. 河南郑州 “7·20” 特大暴雨灾害调查报告公布[EB/OL]. [2022-11-26]. https://www.gov.cn/xinwen/2022-01/21/content_5669723.htm, 2022.
|
|
|
[3] |
刘家宏, 裴羽佳, 梅超, 等 郑州“7·20”特大暴雨内涝成因及灾害防控[J]. 郑州大学学报: 工学版, 2023, 44 (2): 38- 45 LIU Jiahong, PEI Yujia, MEI Chao, et al Waterlogging cause and disaster prevention and control of “7·20” torrential rain in Zhengzhou[J]. Journal of Zhengzhou University: Engineering Science, 2023, 44 (2): 38- 45
|
|
|
[4] |
DE ALBUQUERQUE J P, HERFORT B, BRENNING A, et al A geographic approach for combining social media and authoritative data towards identifying useful information for disaster management[J]. International Journal of Geographical Information Science, 2015, 29 (4): 667- 689
doi: 10.1080/13658816.2014.996567
|
|
|
[5] |
ROSSER J F, LEIBOVICI D G, JACKSON M J Rapid flood inundation mapping using social media, remote sensing and topographic data[J]. Natural Hazards, 2017, 87: 103- 120
doi: 10.1007/s11069-017-2755-0
|
|
|
[6] |
SATHIANARAYANAN M, HSU P H, CHANG C C. Extracting disaster location identification from social media images using deep learning[J]. International Journal of Disaster Risk Reduction , 2024: 104352.
|
|
|
[7] |
KIM J, HASTAK M Social network analysis: characteristics of online social networks after a disaster[J]. International Journal of Information Management, 2018, 38 (1): 86- 96
doi: 10.1016/j.ijinfomgt.2017.08.003
|
|
|
[8] |
周利敏 大数据时代的社交媒体与自然灾害治理[J]. 人文杂志, 2021, (1): 102- 109 ZHOU Limin Social media and natural disaster management in the era of big data[J]. The Journal of Humanities, 2021, (1): 102- 109
|
|
|
[9] |
金城, 吴文渊, 陈柏儒, 等 面向不同用户群体的社交媒体台风舆情演化分析及对比研究[J]. 地球信息科学学报, 2021, 23 (12): 2174- 2186 JIN Cheng, WU Wenyuan, CHEN Bairu, et al Analysis and comparative study of the evolution of public opinion on social media during typhoon for different user groups[J]. Journal of Geo-information Science, 2021, 23 (12): 2174- 2186
|
|
|
[10] |
JING M, SCOTNEY B W, COLEMAN S A, et al. Integration of text and image analysis for flood event image recognition [C]// 27th Irish Signals and Systems Conference . Londonderry: IEEE, 2016: 1−6.
|
|
|
[11] |
GUPTA A, LAMBA H, KUMARAGURU P, et al. Faking sandy: characterizing and identifying fake images on twitter during hurricane sandy [C]// Proceedings of the 22nd International Conference on World Wide Web . Rio de Janeiro: ACM, 2013: 729−736.
|
|
|
[12] |
ALLCOTT H, GENTZKOW M, YU C, et al. Trends in the diffusion of misinformation on social media [J]. Research and Politics , 2019, 6(2): 2053168019848554.
|
|
|
[13] |
TALWAR S, DHIR A, KAURP, et al Why do people share fake news? Associations between the dark side of social media use and fake news sharing behavior[J]. Journal of Retailing and Consumer Services, 2019, 1 (51): 72- 82
|
|
|
[14] |
JIM Z, CAO J, GUO H, et al. Multimodal fusion with recurrent neural networks for rumor detection on microblogs [C]// Proceedings of the 25th ACM International Conference on Multimedia . New York: ACM, 2017: 795−816.
|
|
|
[15] |
LIN F, CHANG W Y, LEE L C, et al. Applications of image recognition for real-time water level and surface velocity [C]// IEEE International Symposium on Multimedia . Anaheim: IEEE, 2013: 259−262.
|
|
|
[16] |
许小华, 李亚琳, 吕姚, 等 基于两阶段深度学习的水位智能识别方法[J]. 中国防汛抗旱, 2023, 33 (10): 13- 20 XU Xiaohua, LI Yalin, LYU Yao, et al Intelligent recognition algorithm for water level measurement based on improved YOLOX-S algorithm[J]. China Flood and Drought Management, 2023, 33 (10): 13- 20
|
|
|
[17] |
李小宁, 俞悦, 王船海, 等 南方平原河网区城市内涝的全过程监测与特征分析[J]. 水利学报, 2022, 53 (7): 845- 853 LI Xiaoning, YU Yue, WANG Chuanhai, et al Monitoring and characterization of the entire urban flooding process in the typical southern plain river network area[J]. Journal of Hydraulic Engineering, 2022, 53 (7): 845- 853
|
|
|
[18] |
JAFARI NH, LI X, CHEN Q, et al Real-time water level monitoring using live cameras and computer vision techniques[J]. Computers and Geosciences, 2021, 147: 104642
doi: 10.1016/j.cageo.2020.104642
|
|
|
[19] |
柳进元, 张明锋 基于YOLOv5算法的图像水深自动提取[J]. 福建师范大学学报: 自然科学版, 2023, 39 (1): 86- 92 LIU Jinyuan, ZHANG Mingfeng Automatic image water depth extraction based on YOLOv5 algorithm[J]. Journal of Fujian Normal University: Natural Science Edition, 2023, 39 (1): 86- 92
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|