Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (9): 1822-1831    DOI: 10.3785/j.issn.1008-973X.2024.09.007
    
Analysis of inundation from social media based on integrated YOLOv5 and Mask-RCNN model
Lingjia ZHANG(),Xinlei ZHOU,Yueping XU,Yenming CHIANG*()
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
Download: HTML     PDF(2093KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Due to the lack of empirical inundation data, a novel method was explored for extracting flood inundation information from social media uploads using social media and deep learning technologies, addressing the need for urban area inundation depth measurement data. Firstly, the image segmentation model based on the YOLOv5 and Mask-RCNN was constructed and the identification dataset of various key parts of vehicles was constructed. A novel method for extracting the inundation height during urban flooding events was proposed according to the model training results. By inputting inundation images, the prediction of submerged locations and depths in urban inundation was conducted. These predictions were then compared with the data obtained from the inundation recurrence model. A validation dataset was formed by conducting the simulated inundation experiments, to verify the feasibility of the proposed model. Results showed that the Nash efficiency coefficient of the proposed model was 0.98. Moreover, the social media images from the actual urban flooding during the "7·20" event in Zhengzhou City were used to verify the reliability of the proposed model. Results showed that the proposed method can provide an effective data source for the process of urban inundation.



Key wordsurban inundation      social media      YOLOv5      Mask-RCNN      water depth extraction      image recognition     
Received: 03 December 2023      Published: 30 August 2024
CLC:  TV 122  
Fund:  浙江省重点研发计划资助项目(2021C03017) ;浙江省自然基金重点研究资助项目(LZ20E090001).
Corresponding Authors: Yenming CHIANG     E-mail: 22312102@zju.edu.cn;chiangym@zju.edu.cn
Cite this article:

Lingjia ZHANG,Xinlei ZHOU,Yueping XU,Yenming CHIANG. Analysis of inundation from social media based on integrated YOLOv5 and Mask-RCNN model. Journal of ZheJiang University (Engineering Science), 2024, 58(9): 1822-1831.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.09.007     OR     https://www.zjujournals.com/eng/Y2024/V58/I9/1822


基于YOLOv5和Mask-RCNN组合模型的社交媒体内涝灾害分析

由于缺少淹没实测数据,针对城市市区淹没深度测量数据需求,基于社交媒体与深度学习技术,探索根据社交媒体用户上传信息提取洪水淹没信息的新方法. 研发基于YOLOv5与Mask-RCNN组合模型的实例分割算法,制作轿车众多关键部位的识别数据集. 根据模型训练结果实现全新的市区淹没事件的淹没高度提取方法. 通过输入淹没图像对城市内涝中淹没点位与淹没深度进行预测,与淹没重演模型得到的数据进行比较. 基于模拟淹没实验来制作验证数据集,验证该方法的可行性. 结果表明,所研发的YOLOv5 与 Mask-RCNN组合模型的纳什效率系数为0.98. 使用郑州市“7·20”城市内涝的实际社交媒体图像进行可靠性验证. 结果表明,所提方法能够为城市市区内涝淹没过程提供有效数据来源.


关键词: 城市内涝,  社交媒体,  YOLOv5,  Mask-RCNN,  水深提取,  图像识别 
Fig.1 Flow chart of extracting urban flood depths using social media images
Fig.2 YOLOv5 neural network model architecture
Fig.3 Mask-RCNN neural network model architecture
位置h1/mm
车轮胎车把手车前灯后视镜前车牌后车牌
顶部6609147371067483622
底部100813640940343480
Tab.1 Height conversion standards for key parts of cars
Fig.4 Schematic diagram of key object part recognition and water depth measurement method
淹没等级h2/mm
轿车SUV公交货车
17580150235
2225240450705
33754007501175
452556010501645
567572013502115
682588016502585
7975104019503055
81125120022503525
91275136025503995
101425152028504465
Tab.2 Height conversion standards for key object submergence level
用户名内容发布时间关键词地点
用户A#郑州大暴雨#淋得真棒 高抬腿走路 水淹大腿了2021?07?21 21∶11:03#郑州大暴雨#郑州·花园路
用户B#郑州大暴雨# 希望排水系统给力一些!2021?07?21 20:22:03#郑州大暴雨#郑州·祝福红城
用户C#郑州特大暴雨为千年一遇##郑州暴雨# 看图2021?07?21 00:22:03#郑州特大暴雨为千年一遇#郑州·河南省体育馆
Tab.3 Examples of text information obtained from social media
Fig.5 Examples of image recognition simulation experiment using YOLOv5
Fig.6 Examples of image recognition simulation experiment using Mask-RCNN
模型$ \mathrm{M}\mathrm{A}\mathrm{E} $$ \mathrm{M}\mathrm{A}\mathrm{P}\mathrm{E} $$ \mathrm{R}\mathrm{M}\mathrm{S}\mathrm{E} $$ \mathrm{N}\mathrm{S}\mathrm{E} $
YOLOv596.690.1497146.300.9486
Mask-RCNN137.400.5818227.600.6949
YOLOv5
&Mask-RCNN
54.420.106791.670.9820
Tab.4 Error analysis of three water depth extraction models mm
Fig.7 Comparison of simulation experimental results of three water depth extraction models
Fig.8 Examples of social media image recognition experiment using two models
地点$ H $/mm
图像1图像2图像3图像4图像5
郑州·祝福红城75.075.0562.0718.0737.0
郑州·富田太阳城75.0562.0562.0197.0
郑州·火车站56275.075.075.0
郑州·商都嘉园穆庄小区东院75.075.075.075.0737.0
Tab.5 Example of depth of inundation in urban
[20]   章卫军, 廖青桃, 杨森, 等 从郑州“2021.7. 20”水灾模型推演看城市洪涝风险管理[J]. 中国防汛抗旱, 2021, 31 (9): 1- 4
ZHANG Weijun, LIAO Qingtao, YANG Sen, et al Thoughts and inspirations: urban flood risk management inferred from Zhengzhou flood model[J]. China Flood and Drought Management, 2021, 31 (9): 1- 4
[1]   李莹, 赵珊珊 2001—2020年中国洪涝灾害损失与致灾危险性研究[J]. 气候变化研究进展, 2022, 18 (2): 154- 165
LI Ying, ZHAO Shanshan Floods losses and hazards in China from 2001 to 2020[J]. Climate Change Research, 2022, 18 (2): 154- 165
[2]   新华社. 河南郑州 “7·20” 特大暴雨灾害调查报告公布[EB/OL]. [2022-11-26]. https://www.gov.cn/xinwen/2022-01/21/content_5669723.htm, 2022.
[3]   刘家宏, 裴羽佳, 梅超, 等 郑州“7·20”特大暴雨内涝成因及灾害防控[J]. 郑州大学学报: 工学版, 2023, 44 (2): 38- 45
LIU Jiahong, PEI Yujia, MEI Chao, et al Waterlogging cause and disaster prevention and control of “7·20” torrential rain in Zhengzhou[J]. Journal of Zhengzhou University: Engineering Science, 2023, 44 (2): 38- 45
[4]   DE ALBUQUERQUE J P, HERFORT B, BRENNING A, et al A geographic approach for combining social media and authoritative data towards identifying useful information for disaster management[J]. International Journal of Geographical Information Science, 2015, 29 (4): 667- 689
doi: 10.1080/13658816.2014.996567
[5]   ROSSER J F, LEIBOVICI D G, JACKSON M J Rapid flood inundation mapping using social media, remote sensing and topographic data[J]. Natural Hazards, 2017, 87: 103- 120
doi: 10.1007/s11069-017-2755-0
[6]   SATHIANARAYANAN M, HSU P H, CHANG C C. Extracting disaster location identification from social media images using deep learning[J]. International Journal of Disaster Risk Reduction , 2024: 104352.
[7]   KIM J, HASTAK M Social network analysis: characteristics of online social networks after a disaster[J]. International Journal of Information Management, 2018, 38 (1): 86- 96
doi: 10.1016/j.ijinfomgt.2017.08.003
[8]   周利敏 大数据时代的社交媒体与自然灾害治理[J]. 人文杂志, 2021, (1): 102- 109
ZHOU Limin Social media and natural disaster management in the era of big data[J]. The Journal of Humanities, 2021, (1): 102- 109
[9]   金城, 吴文渊, 陈柏儒, 等 面向不同用户群体的社交媒体台风舆情演化分析及对比研究[J]. 地球信息科学学报, 2021, 23 (12): 2174- 2186
JIN Cheng, WU Wenyuan, CHEN Bairu, et al Analysis and comparative study of the evolution of public opinion on social media during typhoon for different user groups[J]. Journal of Geo-information Science, 2021, 23 (12): 2174- 2186
[10]   JING M, SCOTNEY B W, COLEMAN S A, et al. Integration of text and image analysis for flood event image recognition [C]// 27th Irish Signals and Systems Conference . Londonderry: IEEE, 2016: 1−6.
[11]   GUPTA A, LAMBA H, KUMARAGURU P, et al. Faking sandy: characterizing and identifying fake images on twitter during hurricane sandy [C]// Proceedings of the 22nd International Conference on World Wide Web . Rio de Janeiro: ACM, 2013: 729−736.
[12]   ALLCOTT H, GENTZKOW M, YU C, et al. Trends in the diffusion of misinformation on social media [J]. Research and Politics , 2019, 6(2): 2053168019848554.
[13]   TALWAR S, DHIR A, KAURP, et al Why do people share fake news? Associations between the dark side of social media use and fake news sharing behavior[J]. Journal of Retailing and Consumer Services, 2019, 1 (51): 72- 82
[14]   JIM Z, CAO J, GUO H, et al. Multimodal fusion with recurrent neural networks for rumor detection on microblogs [C]// Proceedings of the 25th ACM International Conference on Multimedia . New York: ACM, 2017: 795−816.
[15]   LIN F, CHANG W Y, LEE L C, et al. Applications of image recognition for real-time water level and surface velocity [C]// IEEE International Symposium on Multimedia . Anaheim: IEEE, 2013: 259−262.
[16]   许小华, 李亚琳, 吕姚, 等 基于两阶段深度学习的水位智能识别方法[J]. 中国防汛抗旱, 2023, 33 (10): 13- 20
XU Xiaohua, LI Yalin, LYU Yao, et al Intelligent recognition algorithm for water level measurement based on improved YOLOX-S algorithm[J]. China Flood and Drought Management, 2023, 33 (10): 13- 20
[17]   李小宁, 俞悦, 王船海, 等 南方平原河网区城市内涝的全过程监测与特征分析[J]. 水利学报, 2022, 53 (7): 845- 853
LI Xiaoning, YU Yue, WANG Chuanhai, et al Monitoring and characterization of the entire urban flooding process in the typical southern plain river network area[J]. Journal of Hydraulic Engineering, 2022, 53 (7): 845- 853
[18]   JAFARI NH, LI X, CHEN Q, et al Real-time water level monitoring using live cameras and computer vision techniques[J]. Computers and Geosciences, 2021, 147: 104642
doi: 10.1016/j.cageo.2020.104642
[19]   柳进元, 张明锋 基于YOLOv5算法的图像水深自动提取[J]. 福建师范大学学报: 自然科学版, 2023, 39 (1): 86- 92
LIU Jinyuan, ZHANG Mingfeng Automatic image water depth extraction based on YOLOv5 algorithm[J]. Journal of Fujian Normal University: Natural Science Edition, 2023, 39 (1): 86- 92
[1] Qingdong RAN,Lixin ZHENG. Defect detection method of lithium battery electrode based on improved YOLOv5[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(9): 1811-1821.
[2] Jiansong CHEN,Yijun CAI. Lightweight object detection scheme for garbage classification scenario[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(1): 71-77.
[3] Xin JIN,Jian-jun ZHUANG,Zi-heng XU. Lightweight YOLOv5s network-based algorithm for identifying hazardous objects under vehicles[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(8): 1516-1526.
[4] Hao-jie FANG,Hong-zhao DONG,Shao-xuan LIN,Jian-yu LUO,Yong FANG. Driver fatigue state detection method based on multi-feature fusion[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1287-1296.
[5] Qing-lu MA,Jia-ping LU,Xiao-yao TANG,Xue-feng DUAN. Improved YOLOv5s flame and smoke detection method in road tunnels[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 784-794.
[6] Yao ZENG,Fa-qin GAO. Surface defect detection algorithm of electronic components based on improved YOLOv5[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 455-465.
[7] Xiao-chen JU,Xin-xin ZHAO,Sheng-sheng QIAN. Self-attention mechanism based bridge bolt detection algorithm[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 901-908.
[8] Tian-le YUAN,Ju-long YUAN,Yong-jian ZHU,Han-chen ZHENG. Surface defect detection algorithm of thrust ball bearing based on improved YOLOv5[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(12): 2349-2357.
[9] Yun-zuo ZHANG,Wei GUO,Zhao-quan CAI,Wen-bo LI. Remote sensing image target detection combining multi-scale and attention mechanism[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2215-2223.
[10] Hao SUN,Kun-lin TANG,Ai-bing JIN,Mei-chen LIU,Shuai-jun CHEN,Mu-ya LI. Experimental study on influence of single coarse particle on shear properties of ore-rock particle system[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 2037-2048.
[11] Hong-zhao DONG,Hao-jie FANG,Nan ZHANG. Multi-scale object detection algorithm for recycled objects based on rotating block positioning[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 16-25.
[12] Ying-jie ZHENG,Song-rong WU,Ruo-yu WEI,Zhen-wei TU,Jin LIAO,Dong LIU. Metro location point matching and false alarm elimination based on FCM algorithm of target image[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 586-593.
[13] Yi-peng HUANG,Ji-su HU,Xu-sheng QIAN,Zhi-yong ZHOU,Wen-lu ZHAO,Qi MA,Jun-kang SHEN,Ya-kang DAI. SE-Mask-RCNN: segmentation method for prostate cancer on multi-parametric MRI[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 203-212.
[14] GUO Tong, GUO Bin, ZHANG Jia-fan, YU Zhi-wen, ZHOU Xing-she. CrowdTravel: leveraging heterogeneous crowdsourced data for scenic spot profiling[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(4): 663-668.