|
|
Calculation method for instantaneous geometric flow rate of aviation fuel helical gear pump |
Jiansen WANG1( ),Wenxuan LI1,Guolei SI2,Junhui CHEN2,Hongliang YAN1,Xu WANG1 |
1. College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China 2. Sichuan Aerospace Fenghuo Servo Control Technology Corporation, Chengdu 611130, China |
|
|
Abstract A calculation method of instantaneous geometric flow rate of an involute external meshing aviation fuel helical gear pump was analyzed in order to clarify the influence of helical gear structure on the instantaneous geometric flow rate characteristics of the pump. The sealing discharge chamber of the pump was regarded as a stack of axial multi-layer slices. The axial projection of the end faces of each layer was a single connected domain composed of piecewise smooth curves based on the method of parameterized modeling of tooth profile. The mathematical model of the boundary segment curve of each layer projection surface geometric domain was established. The area of each layer geometric domain was calculated by Green’s formula, and the volume of each layer slice was obtained. Then the volume of each layer slice was added up along the axial direction to get the total volume of the pump. The instantaneous geometric flow characteristics of the pump can be obtained by updating the gear rotation angle. Case calculations show that the average output flow rate of the pump is smaller and the flow pulsation rate is slightly increased with fixed tooth width and larger helical angle when the suction chamber and discharge chamber are reliably isolated with the unloading groove structure and with the gear backlash meshing compared with spur gear pumps with the same involute parameters on the end face. The average output flow rate of the pump increases and the flow pulsation rate increases slightly when the helical angle is unchanged and the tooth width is larger. The flow pulsation can be reduced by increasing the helical angle and tooth width when there is no unloading groove on the oil discharge side.
|
Received: 25 March 2024
Published: 25 April 2025
|
|
Fund: 甘肃省自然科学基金资助项目(17JR5RA120);甘肃省科技专员专项资助项目(技术创新引导计划22CX8GA119);成都市科技局重大创新资助项目(研JSYF-CDKJ-2101). |
航空燃油斜齿轮泵瞬时几何流量的计算方法
为了明确斜齿结构对泵瞬时几何流量特性的影响规律,以某型渐开线外啮合航空燃油斜齿轮泵为研究对象,对瞬时几何流量的计算方法进行探究. 将泵的密封排油容腔看成由轴向多层切片堆叠而成,每一层切片端面的轴向投影为分段光滑曲线构成的单连通域,基于齿廓参数化建模方法建立各层投影面几何域边界分段曲线的数学模型. 利用格林公式计算得到各层几何域的面积和各层切片的体积,沿轴向叠加求和得到排油容腔总体积,更新齿轮转角,可得排油容腔的体积变化量和齿轮泵的瞬时几何流量特性. 经案例计算表明,与端面渐开线参数相同的直齿轮泵相比,当吸排油可靠隔离设有卸荷槽结构及有侧隙啮合时,齿宽一定,斜齿轮螺旋角越大,泵的平均输出流量变小,流量脉动率略有增大;螺旋角不变,齿宽越大,泵的平均输出流量越大,流量脉动率略有增大;当排油侧无卸荷槽时,增大螺旋角和齿宽可以降低流量脉动.
关键词:
斜齿轮泵,
渐开线齿形,
外啮合,
瞬时几何流量
|
|
[1] |
RUNDO M Models for flow rate simulation in gear pumps: a review[J]. Energies, 2017, 10 (9): 1261- 1293
doi: 10.3390/en10091261
|
|
|
[2] |
符江锋, 赵志杰, 刘显为, 等 基于运动法的航空发动机高速燃油齿轮泵卸荷槽设计与验证[J]. 推进技术, 2024, 45 (5): 202- 212 FU Jiangfeng, ZHAO Zhijie, LIU Xianwei, et al Design and verification of relief groove for aero-engine high-speed fuel gear pump based on motion method[J]. Journal of Propulsion Technology, 2024, 45 (5): 202- 212
|
|
|
[3] |
齐国宁, 吴宝海, 符江锋 高速高压燃油齿轮泵典型卸荷槽对比分析研究[J]. 航空学报, 2024, 45 (5): 344- 359 QI Guoning, WU Baohai, FU Jiangfeng Comparative analysis on relief grooves of high-speed and high-pressure aeroengine fuel gear pumps[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45 (5): 344- 359
|
|
|
[4] |
邢毅真, 黎义斌 , 张生福, 等 . 螺旋角对航空燃油齿轮泵性能及流量脉动特性的影响[J]. 推进技术, 2023, 44 (3): 142-153. XING Yizhen, LI Yibin, ZHANG Shengfu, et al. Effects of helical angle on performance and flow pulsation characteristics of aviation fuel gear pump [J]. Journal of Propulsion Technology , 2023, 44(3): 142-153.
|
|
|
[5] |
赵亮, 任喜岩, 王冬屏 斜齿齿轮泵流量输出特性分析[J]. 机械工程学报, 1999, 35 (5): 94- 97 ZHAO Liang, REN Xiyan, WANG Dongping Analysis of helical gear pump for flow output property[J]. Journal of Mechanical Engineering, 1999, 35 (5): 94- 97
doi: 10.3321/j.issn:0577-6686.1999.05.022
|
|
|
[6] |
周骥平, 姜铭, 李益民, 等 斜齿齿轮泵小脉动输出特性[J]. 机械工程学报, 2000, 36 (12): 18- 20 ZHOU Jiping, JIANG Ming, LI Yimin, et al Small pulse output characteristics of helical gear pump[J]. Journal of Mechanical Engineering, 2000, 36 (12): 18- 20
doi: 10.3901/JME.2000.12.018
|
|
|
[7] |
甘学辉, 吴晓铃, 侯东海 液压齿轮泵的性能研究[J]. 机械设计与制造, 2001, (3): 69- 70 GAN Xuehui, WU Xiaoling, HOU Donghai Research on performance of hydraulic gear pump[J]. Machinery Design and Manufacture, 2001, (3): 69- 70
|
|
|
[8] |
周兰美 外啮合异齿数斜齿轮泵流量脉动和流量特性的研究[J]. 机床与液压, 2019, 47 (21): 143- 146 ZHOU Lanmei Study on flow pulsation and flow characteristics of external helical gear pump with different number of teeth[J]. Machine Tool and Hydraulics, 2019, 47 (21): 143- 146
|
|
|
[9] |
HUANG K J, CHEN C C, CHANG Y Y Geometric displacement optimization of external helical gear pumps[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2009, 223 (9): 2191- 2199
doi: 10.1243/09544062JMES1398
|
|
|
[10] |
LIU K, XU L, DAI Y, et al. Numerical experiment for flow characteristics and cavitation influence factors of the external high pressure pump [C]// Proceedings of 2nd International Conference on Applied Mechanics, Electronics and Mechatronics Engineering . Beijing: DEStech Publications, 2017: 268-274.
|
|
|
[11] |
卞革. 基于Pumplinx的外啮合斜齿轮泵优化设计研究[D]. 兰州: 兰州理工大学, 2023. BIAN Ge. Research on optimization design of external helical gear pump based on pumplinx [D]. Lanzhou: Lanzhou University of Technology, 2023.
|
|
|
[12] |
杨国来, 李明学 渐开线外啮合斜齿轮泵困油特性研究[J]. 液压与气动, 2016, 40 (1): 122- 124 YANG Guolai, LI Mingxue Trapped oil characteristics study on external helical involute gear pump[J]. Chinese Hydraulics and Pneumatics, 2016, 40 (1): 122- 124
|
|
|
[13] |
RANSEGNOLA T, ZHAO X, VACCA A A comparison of helical and spur external gear machines for fluid power applications: design and optimization[J]. Mechanism and Machine Theory, 2019, 142 (9): 103604
|
|
|
[14] |
MAZZEI P, FROSINA E, SENATORE A Helical gear pump: a comparison between a lumped parameter and a computational fluid dynamics-based approaches[J]. Fluids, 2023, 8 (7): 193
doi: 10.3390/fluids8070193
|
|
|
[15] |
ZHAO X, VACCA A, DHAR S. Numerical modeling of a helical external gear pump with continuous-contact gear profile: a comparison between a lumped-parameter and a 3D CFD approach of simulation [C]// BATH/ASME 2018 Symposium on Fluid Power and Motion Control . [S. l. ]: ASME, 2018: V001T01A053.
|
|
|
[16] |
ZHAO X, VACCA A Analysis of continuous-contact helical gear pumps through numerical modeling and experimental validation[J]. Mechanical Systems and Signal Processing, 2018, 109 (9): 352- 378
|
|
|
[17] |
孙恒, 陈作模, 葛文杰. 机械原理[M]. 8版. 北京: 机械工业出版社, 2021: 197-200.
|
|
|
[18] |
徐克根 渐开线齿轮齿根过渡曲线计算及在 UG 中精确建立齿轮三维模型[J]. 装备制造技术, 2019, (11): 168- 171 XU Kegen Accurate involute gear tooth root transition curve drawing and gear 3D modeling in UG[J]. Equipment Manufacturing Technology, 2019, (11): 168- 171
|
|
|
[19] |
陈晨, 杨国来, 董季澄, 等 渐开线外啮合圆柱斜齿轮流量计脉动性研究[J]. 液压气动与密封, 2019, 39 (1): 49- 52 CHEN Chen, YANG Guolai, DONG Jicheng, et al The study on the pulsation of a involute external gear cylindrical helical gear flowmeter[J]. Hydraulics Pneumatics and Seals, 2019, 39 (1): 49- 52
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|