Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (3): 535-545    DOI: 10.3785/j.issn.1008-973X.2025.03.011
    
Occluded bird nest detection based on asymptotic feature fusion and multi-scale dilated attention
Xianglei YIN(),Shaopeng QU,Yongfang XIE,Ni SU
College of Electrical Engineering, Shaanxi University of Technology, Hanzhong 723000, China
Download: HTML     PDF(5885KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An improved YOLOv5 transmission line bird nest detection method was proposed, in order to improve the detection performance and accuracy of the occluded bird nest targets, as well as reduce the threat of bird nesting to the stable operation of the power system and the operation and maintenance cost. Firstly, the asymptotic feature pyramid network was used to optimize the original feature pyramid network structure, effectively avoiding the large semantic gap between non-adjacent layers, and enhancing the fusion effect between non-adjacent layers. Secondly, the multi-scale dilated attention mechanism was used to enable the model to effectively extract semantic information at different scales and improve the detection performance of the model for occluded bird nest targets. Finally, the lightweight MobileNetV3 network was adopted as the backbone network to further reduce the complexity of the model. Ablation experiments and qualitative experimental analysis demonstrated that, the recall, precision and mean average precision of the improved algorithm were respectively improved by 2.0 percentage point, 0.7 percentage point and 1.7 percentage point compared with the original algorithm, and the weight and the computational amount were reduced by 74.7 percentage point and 53.5 percentage point, respectively. The results showed good performance for the occluded bird nest targets, which verified the effectiveness of the improved method.



Key wordstransmission line      occlusion target      YOLOv5      attention mechanism      asymptotic feature pyramid network     
Received: 07 March 2024      Published: 10 March 2025
CLC:  TP 391.4  
Fund:  国家自然科学基金资助项目(62176146);陕西省教育厅重点科学研究计划资助项目(20JS018);陕西理工大学人才启动专项资助项目(SLGRCQD2114).
Cite this article:

Xianglei YIN,Shaopeng QU,Yongfang XIE,Ni SU. Occluded bird nest detection based on asymptotic feature fusion and multi-scale dilated attention. Journal of ZheJiang University (Engineering Science), 2025, 59(3): 535-545.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.03.011     OR     https://www.zjujournals.com/eng/Y2025/V59/I3/535


基于渐进特征融合及多尺度空洞注意力的遮挡鸟巢检测

为了提高被遮挡鸟巢目标的检测性能与准确性,减少鸟类筑巢对电力系统稳定运行造成的威胁以及运维成本,提出基于改进YOLOv5的输电线路鸟巢检测方法. 该方法使用渐进特征金字塔网络优化原始特征金字塔网络结构,有效避免了非相邻层次之间较大的语意差距,增强了非相邻层次间的融合效果. 使用多尺度空洞注意力机制,使模型能够有效地提取不同尺度的语义信息,提高模型对遮挡鸟巢目标的检测性能. 采用轻量级MobileNetV3网络作为骨干网络,进一步降低模型复杂度. 消融实验与定性实验结果表明,改进后算法的召回率、精确率与平均精度均值相较于原始算法分别提升了2.0个百分点、0.7个百分点与1.7个百分点,权重大小与计算量分别减少了74.7个百分点与53.5个百分点. 对于遮挡鸟巢目标均表现出良好的性能,验证了改进方法的有效性.


关键词: 输电线路,  遮挡目标,  YOLOv5,  注意力机制,  渐进特征金字塔网络 
Fig.1 Network structure diagram of YOLOv5s
Fig.2 MMA-YOLOv5 algorithm framework
实验P/%R/%mAP@0.5/%S/MBF/109
ShuffleNetV289.291.088.115.38.0
EfficientNetV287.992.088.921.95.6
Ghost88.093.088.520.210.7
Mobileone81.092.085.312.88.4
MobileNetV389.193.089.625.811.3
Tab.1 Results of lightweight network comparison experiment
Fig.3 Comparison experiment results of mean average precision of lightweight network
Fig.4 Depth separable convolution
Fig.5 Standard convolution
Fig.6 SE channel attention mechanism
Fig.7 Multi-scale dilated attention
Fig.8 Visualization comparison of attention map
Fig.9 AFPN asymptotic architecture
Fig.10 Loss function curve for improved and original algorithms
Fig.11 Performance comparison for improved and original algorithms
Fig.12 Comparison of mean average precision
实验MobileNet-V3
轻量化网络
AFPNMSDAP/%R/%mAP@0.5/%S/MBF/109
YOLOv589.694.089.934.415.9
189.193.089.625.811.3
292.891.088.829.720.4
391.993.089.731.516.8
487.396.091.49.27.9
587.194.089.05.72.5
691.891.089.433.721.3
改进算法90.396.091.68.77.4
Tab.2 Results of ablation experiment
实验P/%R/%mAP@0.5/%S/MBF/109
Faster R-CNN77.887.586.3108.2251.4
SSD83.375.079.790.672.3
YOLOv394.891.089.3235.0155.3
YOLOv488.679.986.1244.4100.7
YOLOv589.694.089.934.415.9
改进算法90.396.091.68.77.4
Tab.3 Comparison of results of different algorithms
Fig.13 Illustration of occluded test image
Fig.14 Detection results of different algorithm
[1]   陈杰, 朱仕焜, 孙嫱, 等 面向无人机前端轻量级应用的输电线路鸟巢智能检测[J]. 福州大学学报: 自然科学版, 2023, 51 (4): 539- 546
CHEN Jie, ZHU Shikun, SUN Qiang, et al Bird’s nest intelligent detection on transmission lines for unmanned aerial vehicle front-end lightweight application[J]. Journal of Fuzhou University: Natural Science Edition, 2023, 51 (4): 539- 546
[2]   WEN X, WU Q, WANG Y, et al High-risk region of bird streamer flashover in 110 kV composite insulators and design for bird-preventing shield[J]. International Journal of Electrical Power and Energy Systems, 2021, 131: 107010
doi: 10.1016/j.ijepes.2021.107010
[3]   裴少通, 张行远, 胡晨龙, 等 基于ER-YOLO算法的跨环境输电线路缺陷识别方法[J]. 电工技术学报, 2024, 39 (9): 2825- 2840
PEI Shaotong, ZHANG Hangyuan, HU Chenlong, et al The defect detection method for cross-environment power transmission line based on the ER-YOLO algorithm[J]. Transactions of China Electrotechnical Society, 2024, 39 (9): 2825- 2840
[4]   何冠锋. 基于深度学习的输电线路鸟巢检测研究[D]. 东莞: 东莞理工学院, 2023.
HE Guanfeng. Research on bird nest detection of transmission lines based on deep learning [D]. Dongguan: Dongguan University of Technology, 2023.
[5]   徐晶, 韩军, 童志刚, 等 一种无人机图像的铁塔上鸟巢检测方法[J]. 计算机工程与应用, 2017, 53 (6): 231- 235
XU Jing, HAN Jun, TONG Zhigang, et al Method for detecting bird’s nest on tower based on UAV image[J]. Computer Engineering and Applications, 2017, 53 (6): 231- 235
[6]   LU J, XU X, LI X, et al Detection of bird’s nest in high power lines in the vicinity of remote campus based on combination features and cascade classifier[J]. IEEE Access, 2018, 6: 39063- 39071
doi: 10.1109/ACCESS.2018.2851588
[7]   李浩然, 高健, 吴田, 等 基于改进Canny算子的绝缘子裂纹检测研究[J]. 智慧电力, 2021, 49 (2): 91- 98
LI Haoran, GAO Jian, WU Tian, et al Crack detection method of insulators based on improved canny operator[J]. Smart Power, 2021, 49 (2): 91- 98
[8]   LECUN Y, BENGIO Y, HINTON G Deep learning[J]. Nature, 2015, 521 (7553): 436- 444
[9]   REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Las Vegas: IEEE, 2016: 779–788.
[10]   LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multiBox detector [C]// European Conference on Computer Vision . [s.l.]: Springer, 2016: 21–37.
[11]   LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection [C]// Proceedings of the IEEE International Conference on Computer Vision . Venice: IEEE, 2017: 2999–3007.
[12]   GIRSHICK R. Fast R-CNN [C]// Proceedings of the IEEE International Conference on Computer Vision . Santiago: IEEE, 2015, 7: 1440–1448.
[13]   REN S, HE K, GIRSHICK R, et al Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149
doi: 10.1109/TPAMI.2016.2577031
[14]   HE K, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN [C]// Proceedings of the IEEE International Conference on Computer Vision . Venice: IEEE, 2017: 2980–2988.
[15]   魏业文, 李梅, 解园琳, 等 基于改进Faster-RCNN的输电线路巡检图像检测[J]. 电力工程技术, 2022, 41 (2): 171- 178
WEI Yewen, LI Mei, XIE Yuanlin, et al Transmission line inspection image detection based on improved Faster-RCNN[J]. Electric Power Engineering Technology, 2022, 41 (2): 171- 178
[16]   王纪武, 罗海保, 鱼鹏飞, 等 基于Faster R-CNN的多尺度高压塔鸟巢检测[J]. 北京交通大学学报, 2019, 43 (5): 37- 43
WANG Jiwu, LUO Haibao, YU Pengfei, et al Bird’s nest detection in multi-scale of high-voltage tower based on Faster R-CNN[J]. Journal of Beijing Jiaotong University, 2019, 43 (5): 37- 43
[17]   杨学存, 和沛栋, 陈丽媛, 等 基于深度可分离卷积的轻量级YOLOv3输电线路鸟巢检测方法[J]. 智慧电力, 2021, 49 (12): 88- 95
YANG Xuecun, HE Peidong, CHEN Liyuan, et al Bird’s nest detection on lightweight YOLOv3 transmission line based on deep separable convolution[J]. Smart Power, 2021, 49 (12): 88- 95
[18]   赵霖, 王素珍, 邵明伟, 等 基于改进YOLOv5的输电线路鸟巢缺陷检测方法[J]. 电子测量技术, 2023, 46 (3): 157- 165
ZHAO Lin, WANG Suzhen, SHAO Mingwe, et al Improved YOLOv5-based bird’s nest defect detection method for transmission lines[J]. Electronic Measurement Technology, 2023, 46 (3): 157- 165
[19]   王杨杨, 曹晖, 莫文昊 基于深度学习的改进型YOLOv4输电线路鸟巢检测与识别[J]. 智慧电力, 2023, 51 (1): 101- 107
WANG Yangyang, CAO Hui, MO Wenhao Bird’s nest det1ection and identification on improved YOLOv4 transmission line based on deep learning[J]. Smart Power, 2023, 51 (1): 101- 107
[20]   ZHANG Z, HE G Recognition of bird nests on power transmission lines in aerial images based on improved YOLOv4[J]. Frontiers in Energy Research, 2022, 10: 870253
doi: 10.3389/fenrg.2022.870253
[21]   HAN G, LI T, LI Q, et al Improved algorithm for insulator and its defect detection based on YOLOX[J]. Sensors, 2022, 22 (16): 6186
doi: 10.3390/s22166186
[22]   肖粲俊, 潘睿志, 李超, 等 基于改进YOLOv5s绝缘子缺陷检测技术研究[J]. 电子测量技术, 2022, 45 (24): 137- 144
XIAO Canjun, PAN Ruizhi, LI Chao, et al Research on defect detection technology based on improved YOLOv5s insulator[J]. Electronic Measurement Technology, 2022, 45 (24): 137- 144
[23]   张焕龙, 齐企业, 张杰, 等 基于改进YOLOv5的输电线路鸟巢检测方法研究[J]. 电力系统保护与控制, 2023, 51 (2): 151- 159
ZHANG Huanlong, QI Qiye, ZHANG Jie, et al Bird nest detection method for transmission lines based on improved YOLOv5[J]. Power System Protection and Control, 2023, 51 (2): 151- 159
[24]   郝琨, 王阔, 王贝贝 基于改进Mobilenet-YOLOv3的轻量级水下生物检测算法[J]. 浙江大学学报: 工学版, 2022, (8): 1622- 1632
HAO Kun, WANG Kuo, WANG Beibei Lightweight underwater biological detection algorithm based on improved Mobilenet-YOLOv3[J]. Journal of Zhejiang University: Engineering Science, 2022, (8): 1622- 1632
[25]   袁天乐, 袁巨龙, 朱勇建, 等 基于改进YOLOv5的推力球轴承表面缺陷检测算法[J]. 浙江大学学报: 工学版, 2022, (12): 2349- 2357
YUAN Tianle, YUAN Julong, ZHU Yongjian, et al Surface defect detection algorithm of thrust ball bearing based on improved YOLOv5[J]. Journal of Zhejiang University: Engineering Science, 2022, (12): 2349- 2357
[26]   LI J, YAN D, LUAN K, et al Deep learning-based bird’s nest detection on transmission lines using UAV imagery[J]. Applied Sciences, 2020, 10 (18): 6147
doi: 10.3390/app10186147
[1] Dengfeng LIU,Wenjing GUO,Shihai CHEN. Content-guided attention-based lane detection network[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(3): 451-459.
[2] Minghui YAO,Yueyan WANG,Qiliang WU,Yan NIU,Cong WANG. Siamese networks algorithm based on small human motion behavior recognition[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(3): 504-511.
[3] Yali XUE,Yiming HE,Shan CUI,Quan OUYANG. Oriented ship detection algorithm in SAR image based on improved YOLOv5[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(2): 261-268.
[4] Qingdong RAN,Lixin ZHENG. Defect detection method of lithium battery electrode based on improved YOLOv5[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(9): 1811-1821.
[5] Lingjia ZHANG,Xinlei ZHOU,Yueping XU,Yenming CHIANG. Analysis of inundation from social media based on integrated YOLOv5 and Mask-RCNN model[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(9): 1822-1831.
[6] Canlin LI,Xinyue WANG,Lizhuang MA,Zhiwen SHAO,Wenjiao ZHANG. Image cartoonization incorporating attention mechanism and structural line extraction[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(8): 1728-1737.
[7] Zhongliang LI,Qi CHEN,Lin SHI,Chao YANG,Xianming ZOU. Dynamic knowledge graph completion of temporal aware combination[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(8): 1738-1747.
[8] Shuhan WU,Dan WANG,Yuanfang CHEN,Ziyu JIA,Yueqi ZHANG,Meng XU. Attention-fused filter bank dual-view graph convolution motor imagery EEG classification[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(7): 1326-1335.
[9] Xianwei MA,Chaohui FAN,Weizhi NIE,Dong LI,Yiqun ZHU. Robust fault diagnosis method for failure sensors[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(7): 1488-1497.
[10] Jun YANG,Chen ZHANG. Semantic segmentation of 3D point cloud based on boundary point estimation and sparse convolution neural network[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1121-1132.
[11] Yuntang LI,Hengjie LI,Kun ZHANG,Binrui WANG,Shanyue GUAN,Yuan CHEN. Recognition of complex power lines based on novel encoder-decoder network[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1133-1141.
[12] Cuiting WEI,Weijian ZHAO,Bochao SUN,Yunyi LIU. Intelligent rebar inspection based on improved Mask R-CNN and stereo vision[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(5): 1009-1019.
[13] Yi LIU,Yidan CHEN,Lin GAO,Jiao HONG. Lightweight road extraction model based on multi-scale feature fusion[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(5): 951-959.
[14] Zhiwei XING,Shujie ZHU,Biao LI. Airline baggage feature perception based on improved graph convolutional neural network[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(5): 941-950.
[15] Hai HUAN,Yu SHENG,Chenxi GU. Global guidance multi-feature fusion network based on remote sensing image road extraction[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(4): 696-707.