An improved YOLOv5 transmission line bird nest detection method was proposed, in order to improve the detection performance and accuracy of the occluded bird nest targets, as well as reduce the threat of bird nesting to the stable operation of the power system and the operation and maintenance cost. Firstly, the asymptotic feature pyramid network was used to optimize the original feature pyramid network structure, effectively avoiding the large semantic gap between non-adjacent layers, and enhancing the fusion effect between non-adjacent layers. Secondly, the multi-scale dilated attention mechanism was used to enable the model to effectively extract semantic information at different scales and improve the detection performance of the model for occluded bird nest targets. Finally, the lightweight MobileNetV3 network was adopted as the backbone network to further reduce the complexity of the model. Ablation experiments and qualitative experimental analysis demonstrated that, the recall, precision and mean average precision of the improved algorithm were respectively improved by 2.0 percentage point, 0.7 percentage point and 1.7 percentage point compared with the original algorithm, and the weight and the computational amount were reduced by 74.7 percentage point and 53.5 percentage point, respectively. The results showed good performance for the occluded bird nest targets, which verified the effectiveness of the improved method.
Tab.1Results of lightweight network comparison experiment
Fig.3Comparison experiment results of mean average precision of lightweight network
Fig.4Depth separable convolution
Fig.5Standard convolution
Fig.6SE channel attention mechanism
Fig.7Multi-scale dilated attention
Fig.8Visualization comparison of attention map
Fig.9AFPN asymptotic architecture
Fig.10Loss function curve for improved and original algorithms
Fig.11Performance comparison for improved and original algorithms
Fig.12Comparison of mean average precision
实验
MobileNet-V3 轻量化网络
AFPN
MSDA
P/%
R/%
mAP@0.5/%
S/MB
F/109
YOLOv5
—
—
—
89.6
94.0
89.9
34.4
15.9
1
√
—
—
89.1
93.0
89.6
25.8
11.3
2
—
√
—
92.8
91.0
88.8
29.7
20.4
3
—
—
√
91.9
93.0
89.7
31.5
16.8
4
√
√
—
87.3
96.0
91.4
9.2
7.9
5
√
—
√
87.1
94.0
89.0
5.7
2.5
6
—
√
√
91.8
91.0
89.4
33.7
21.3
改进算法
√
√
√
90.3
96.0
91.6
8.7
7.4
Tab.2Results of ablation experiment
实验
P/%
R/%
mAP@0.5/%
S/MB
F/109
Faster R-CNN
77.8
87.5
86.3
108.2
251.4
SSD
83.3
75.0
79.7
90.6
72.3
YOLOv3
94.8
91.0
89.3
235.0
155.3
YOLOv4
88.6
79.9
86.1
244.4
100.7
YOLOv5
89.6
94.0
89.9
34.4
15.9
改进算法
90.3
96.0
91.6
8.7
7.4
Tab.3Comparison of results of different algorithms
Fig.13Illustration of occluded test image
Fig.14Detection results of different algorithm
[1]
陈杰, 朱仕焜, 孙嫱, 等 面向无人机前端轻量级应用的输电线路鸟巢智能检测[J]. 福州大学学报: 自然科学版, 2023, 51 (4): 539- 546 CHEN Jie, ZHU Shikun, SUN Qiang, et al Bird’s nest intelligent detection on transmission lines for unmanned aerial vehicle front-end lightweight application[J]. Journal of Fuzhou University: Natural Science Edition, 2023, 51 (4): 539- 546
[2]
WEN X, WU Q, WANG Y, et al High-risk region of bird streamer flashover in 110 kV composite insulators and design for bird-preventing shield[J]. International Journal of Electrical Power and Energy Systems, 2021, 131: 107010
doi: 10.1016/j.ijepes.2021.107010
[3]
裴少通, 张行远, 胡晨龙, 等 基于ER-YOLO算法的跨环境输电线路缺陷识别方法[J]. 电工技术学报, 2024, 39 (9): 2825- 2840 PEI Shaotong, ZHANG Hangyuan, HU Chenlong, et al The defect detection method for cross-environment power transmission line based on the ER-YOLO algorithm[J]. Transactions of China Electrotechnical Society, 2024, 39 (9): 2825- 2840
[4]
何冠锋. 基于深度学习的输电线路鸟巢检测研究[D]. 东莞: 东莞理工学院, 2023. HE Guanfeng. Research on bird nest detection of transmission lines based on deep learning [D]. Dongguan: Dongguan University of Technology, 2023.
[5]
徐晶, 韩军, 童志刚, 等 一种无人机图像的铁塔上鸟巢检测方法[J]. 计算机工程与应用, 2017, 53 (6): 231- 235 XU Jing, HAN Jun, TONG Zhigang, et al Method for detecting bird’s nest on tower based on UAV image[J]. Computer Engineering and Applications, 2017, 53 (6): 231- 235
[6]
LU J, XU X, LI X, et al Detection of bird’s nest in high power lines in the vicinity of remote campus based on combination features and cascade classifier[J]. IEEE Access, 2018, 6: 39063- 39071
doi: 10.1109/ACCESS.2018.2851588
[7]
李浩然, 高健, 吴田, 等 基于改进Canny算子的绝缘子裂纹检测研究[J]. 智慧电力, 2021, 49 (2): 91- 98 LI Haoran, GAO Jian, WU Tian, et al Crack detection method of insulators based on improved canny operator[J]. Smart Power, 2021, 49 (2): 91- 98
[8]
LECUN Y, BENGIO Y, HINTON G Deep learning[J]. Nature, 2015, 521 (7553): 436- 444
[9]
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Las Vegas: IEEE, 2016: 779–788.
[10]
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multiBox detector [C]// European Conference on Computer Vision . [s.l.]: Springer, 2016: 21–37.
[11]
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection [C]// Proceedings of the IEEE International Conference on Computer Vision . Venice: IEEE, 2017: 2999–3007.
[12]
GIRSHICK R. Fast R-CNN [C]// Proceedings of the IEEE International Conference on Computer Vision . Santiago: IEEE, 2015, 7: 1440–1448.
[13]
REN S, HE K, GIRSHICK R, et al Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149
doi: 10.1109/TPAMI.2016.2577031
[14]
HE K, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN [C]// Proceedings of the IEEE International Conference on Computer Vision . Venice: IEEE, 2017: 2980–2988.
[15]
魏业文, 李梅, 解园琳, 等 基于改进Faster-RCNN的输电线路巡检图像检测[J]. 电力工程技术, 2022, 41 (2): 171- 178 WEI Yewen, LI Mei, XIE Yuanlin, et al Transmission line inspection image detection based on improved Faster-RCNN[J]. Electric Power Engineering Technology, 2022, 41 (2): 171- 178
[16]
王纪武, 罗海保, 鱼鹏飞, 等 基于Faster R-CNN的多尺度高压塔鸟巢检测[J]. 北京交通大学学报, 2019, 43 (5): 37- 43 WANG Jiwu, LUO Haibao, YU Pengfei, et al Bird’s nest detection in multi-scale of high-voltage tower based on Faster R-CNN[J]. Journal of Beijing Jiaotong University, 2019, 43 (5): 37- 43
[17]
杨学存, 和沛栋, 陈丽媛, 等 基于深度可分离卷积的轻量级YOLOv3输电线路鸟巢检测方法[J]. 智慧电力, 2021, 49 (12): 88- 95 YANG Xuecun, HE Peidong, CHEN Liyuan, et al Bird’s nest detection on lightweight YOLOv3 transmission line based on deep separable convolution[J]. Smart Power, 2021, 49 (12): 88- 95
[18]
赵霖, 王素珍, 邵明伟, 等 基于改进YOLOv5的输电线路鸟巢缺陷检测方法[J]. 电子测量技术, 2023, 46 (3): 157- 165 ZHAO Lin, WANG Suzhen, SHAO Mingwe, et al Improved YOLOv5-based bird’s nest defect detection method for transmission lines[J]. Electronic Measurement Technology, 2023, 46 (3): 157- 165
[19]
王杨杨, 曹晖, 莫文昊 基于深度学习的改进型YOLOv4输电线路鸟巢检测与识别[J]. 智慧电力, 2023, 51 (1): 101- 107 WANG Yangyang, CAO Hui, MO Wenhao Bird’s nest det1ection and identification on improved YOLOv4 transmission line based on deep learning[J]. Smart Power, 2023, 51 (1): 101- 107
[20]
ZHANG Z, HE G Recognition of bird nests on power transmission lines in aerial images based on improved YOLOv4[J]. Frontiers in Energy Research, 2022, 10: 870253
doi: 10.3389/fenrg.2022.870253
[21]
HAN G, LI T, LI Q, et al Improved algorithm for insulator and its defect detection based on YOLOX[J]. Sensors, 2022, 22 (16): 6186
doi: 10.3390/s22166186
[22]
肖粲俊, 潘睿志, 李超, 等 基于改进YOLOv5s绝缘子缺陷检测技术研究[J]. 电子测量技术, 2022, 45 (24): 137- 144 XIAO Canjun, PAN Ruizhi, LI Chao, et al Research on defect detection technology based on improved YOLOv5s insulator[J]. Electronic Measurement Technology, 2022, 45 (24): 137- 144
[23]
张焕龙, 齐企业, 张杰, 等 基于改进YOLOv5的输电线路鸟巢检测方法研究[J]. 电力系统保护与控制, 2023, 51 (2): 151- 159 ZHANG Huanlong, QI Qiye, ZHANG Jie, et al Bird nest detection method for transmission lines based on improved YOLOv5[J]. Power System Protection and Control, 2023, 51 (2): 151- 159
[24]
郝琨, 王阔, 王贝贝 基于改进Mobilenet-YOLOv3的轻量级水下生物检测算法[J]. 浙江大学学报: 工学版, 2022, (8): 1622- 1632 HAO Kun, WANG Kuo, WANG Beibei Lightweight underwater biological detection algorithm based on improved Mobilenet-YOLOv3[J]. Journal of Zhejiang University: Engineering Science, 2022, (8): 1622- 1632
[25]
袁天乐, 袁巨龙, 朱勇建, 等 基于改进YOLOv5的推力球轴承表面缺陷检测算法[J]. 浙江大学学报: 工学版, 2022, (12): 2349- 2357 YUAN Tianle, YUAN Julong, ZHU Yongjian, et al Surface defect detection algorithm of thrust ball bearing based on improved YOLOv5[J]. Journal of Zhejiang University: Engineering Science, 2022, (12): 2349- 2357
[26]
LI J, YAN D, LUAN K, et al Deep learning-based bird’s nest detection on transmission lines using UAV imagery[J]. Applied Sciences, 2020, 10 (18): 6147
doi: 10.3390/app10186147