|
|
Adaptive sparse representation atom construction method for gearbox diagnosis |
Changqing ZHOU1,2( ),Yaochun HOU2,Peng WU2,*( ),Shuai YANG2,Dazhuan WU2 |
1. Shanghai Marine Equipment Research Institute, Shanghai 200031, China 2. College of Energy Engineering, Zhejiang University, Hangzhou 310027, China |
|
|
Abstract An improved atom pursuit method based on the asymmetric Gaussian chirplet model (AGCM) was developed to achieve better performance in low signal-to-noise ratio environment in order to address the issue of poor optimal atom pursuit performance in traditional sparse representation algorithms under strong interference conditions in gearbox. Wavelet atoms were constructed by using AGCM with multi-parameter and variable shapes. Then a feature-enhanced signal was obtained through an impulse enhancement method. Atom parameters most compatible with fault impulses were identified by maximizing a statistical index under Gaussian hypothesis. Then fault transient components were separated through a multiple enhancement sparse representation algorithm. The effectiveness of the proposed method was validated by using both public dataset and gearbox fault simulation dataset. Comparative analysis with original methods and other existing approaches demonstrates that the proposed method can construct superior sparse representation atoms under strong interference conditions in gearbox signals.
|
Received: 29 March 2024
Published: 25 April 2025
|
|
Fund: 核技术研发科研资助项目. |
Corresponding Authors:
Peng WU
E-mail: cqzhou@zju.edu.cn;roc@zju.edu.cn
|
自适应齿轮箱稀疏表示原子构建方法
针对传统稀疏表示算法在齿轮箱信号干扰较多的情况下最优原子寻优效果不佳的问题,开发基于非对称高斯啁啾模型的改进原子寻优方法,以实现在低信噪比环境中获得更佳性能的目标. 利用具有多参数形状多变的非对称高斯啁啾模型,构建小波原子. 利用构建的小波原子,通过脉冲特征增强方法得到原始振动信号的特征增强信号. 通过最大化高斯条件下的循环平稳性检验指标,寻找与故障脉冲最匹配的小波原子参数,通过多重增强稀疏表示算法分离出故障瞬态分量. 通过公开数据集与故障模拟实验中齿轮箱故障数据集,验证了本文方法的有效性,并与原始方法和其他方法进行对比,证明了本文方法能够在齿轮箱信号存在较多干扰的情况下构建较优的稀疏表示原子.
关键词:
齿轮箱,
故障诊断,
稀疏表示,
非对称高斯啁啾模型,
脉冲特征增强
|
|
[1] |
HOU Y, WU P, WU D An operating condition information-guided iterative variational mode decomposition method based on Mahalanobis distance criterion for surge characteristic frequency extraction of the centrifugal compressor[J]. Mechanical Systems and Signal Processing, 2023, 186 (3): 109836
|
|
|
[2] |
HOU Y, ZHOU C, TIAN C, et al Acoustic feature enhancement in rolling bearing fault diagnosis using sparsity-oriented multipoint optimal minimum entropy deconvolution adjusted method[J]. Applied Acoustics, 2022, 201 (12): 109105
|
|
|
[3] |
侯耀春, 周昶清, 武鹏, 等. 基于最大李雅普诺夫指数异常感知和CatBoost识别的机械密封失效模式层次化诊断框架[J]. 工程热物理学报, 2024, 45(1): 93-100. HOU Yaochun, ZHOU Changqing, WU Peng, et al. Hierarchical diagnostic framework of mechanical seal failure modes based on maximum Lyapunov exponent anomaly sensing and CatBoost model recognition [J]. Journal of Engineering Thermophysics . 2024, 45(1): 93-100.
|
|
|
[4] |
丁康, 李巍华, 朱小勇. 齿轮及齿轮箱故障诊断实用技术[M]. 北京: 机械工业出版社, 2005.
|
|
|
[5] |
ERRICHELLO R, MULLER J. Gearbox reliability collaborative gearbox 1 failure analysis report: December 2010-January 2011 [R]. United States: National Renewable Energy Lab, 2012.
|
|
|
[6] |
WANG W Q, ISMAIL F, GOLNARAGHI M F Assessment of gear damage monitoring techniques using vibration measurements[J]. Mechanical Systems and Signal Processing, 2001, 15 (5): 905- 922
doi: 10.1006/mssp.2001.1392
|
|
|
[7] |
HUANG W, LI S, FU X, et al. Transient extraction based on minimax concave regularized sparse representation for gear fault diagnosis [J]. Measurement . 2020, 151(2): 107273.
|
|
|
[8] |
WANG S, HUANG W, ZHU Z K Transient modeling and parameter identification based on wavelet and correlation filtering for rotating machine fault diagnosis[J]. Mechanical Systems and Signal Processing, 2011, 25 (4): 1299- 1320
doi: 10.1016/j.ymssp.2010.10.013
|
|
|
[9] |
LI N, HUANG W, GUO W, et al Multiple enhanced sparse decomposition for gearbox compound fault diagnosis[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 69 (3): 770- 781
|
|
|
[10] |
WANG S, SELESNICK I, CAI G, et al Nonconvex sparse regularization and convex optimization for bearing fault diagnosis[J]. IEEE Transactions on Industrial Electronics, 2018, 65 (9): 7332- 7342
doi: 10.1109/TIE.2018.2793271
|
|
|
[11] |
ZHOU Q, ZHANG Y, YI C, et al Convolutional sparse coding using pathfinder algorithm-optimized orthogonal matching pursuit with asymmetric Gaussian chirplet model in bearing fault detection[J]. IEEE Sensors Journal, 2021, 21 (16): 18132- 18145
doi: 10.1109/JSEN.2021.3086015
|
|
|
[12] |
SELESNICK I Sparse regularization via convex analysis[J]. IEEE Transactions on Signal Processing, 2017, 65 (17): 4481- 4494
doi: 10.1109/TSP.2017.2711501
|
|
|
[13] |
RAGUET H, LANDRIEU L Preconditioning of a generalized forward-backward splitting and application to optimization on graphs[J]. SIAM Journal on Imaging Sciences, 2015, 8 (4): 2706- 2739
doi: 10.1137/15M1018253
|
|
|
[14] |
ANTONI J, BORGHESANI P A statistical methodology for the design of condition indicators[J]. Mechanical Systems and Signal Processing, 2019, 114 (1): 290- 327
|
|
|
[15] |
EDWARDS A W F. Likelihood [M]// Time series and statistics . New York: Springer, 1972: 126-129.
|
|
|
[16] |
RICE J A. Mathematical statistics and data analysis [M]. Stamford: Cengage Learning, 2006.
|
|
|
[17] |
LIN H, WU F, HE G Rolling bearing fault diagnosis using impulse feature enhancement and nonconvex regularization[J]. Mechanical Systems and Signal Processing, 2020, 142 (8): 106790
|
|
|
[18] |
PHM Society. Public Data Sets. 2009 PHM challenge competition data set [DB/OL]. (2009-08-10)[2024-05-21]. https://phmsociety.org/public-data-sets.
|
|
|
[19] |
HOU B, WANG D, KONG J, et al Understanding importance of positive and negative signs of optimized weights used in the sum of weighted normalized Fourier spectrum/envelope spectrum for machine condition monitoring[J]. Mechanical Systems and Signal Processing, 2022, 174 (7): 109094
|
|
|
[20] |
MCDONALD G L, ZHAO Q Multipoint optimal minimum entropy deconvolution and convolution fix: application to vibration fault detection[J]. Mechanical Systems and Signal Processing, 2017, 82 (1): 461- 477
|
|
|
[21] |
LOPEZ C, WANG D, NARANJO A, et al Box-cox-sparse-measures-based blind filtering: understanding the difference between the maximum kurtosis deconvolution and the minimum entropy deconvolution[J]. Mechanical Systems and Signal Processing, 2022, 165 (2): 108376
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|