Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (9): 1656-1662    DOI: 10.3785/j.issn.1008-973X.2019.09.003
Mechanical Engineering     
Impact of rotating and thermal effects on leakage performance of gearbox with axial labyrinth seal
Yu ZHANG(),Kai-lin ZHANG*(),Yuan YAO
State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, China
Download: HTML     PDF(1090KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The rotating and thermal effects on sealing performance were analyzed and the calculation model of axial lateral straight-through labyrinth seal was established, in order to explore the sealing mechanism of high-speed gearbox with mixed media of lubricating oil and ideal gas. The influences of structure deformation and flow field on the sealing performance were also studied, which were induced by the rotating and thermal effects. The results reveal that the rotating and thermal effects can reduce the sealing gap. Nevertheless, the thermal-effect-induced expansive deformation exceeded the rotating-effect-induced centrifugal deformation by one order of magnitude. In addition, the rotation speed had a threshold value (4 000 r/min). When the rotor rotation speed exceeded this threshold, the leakage loss of labyrinth seal decreased significantly. Compared with the condition without rotation, the leakage loss decreased 18.5% under the rotation speed of 10 000 r/min. At the same time, the leakage loss increased linearly with the increment of lubricating oil temperature and the decrease of oil viscosity. When the oil temperature was at 140 °C, the leakage loss increased 58.6% in comparison with that at 40 °C. The flow filed caused by rotating and thermal effects is the major factor affecting the leakage performance of gearbox sealing system, while the structure deformation is the secondary factor.



Key wordshigh-speed gearbox      axial labyrinth seal      rotating effect      thermal effect      two-phase flow     
Received: 03 January 2019      Published: 12 September 2019
CLC:  U 270.2  
Corresponding Authors: Kai-lin ZHANG     E-mail: zhangyutpl@163.com;zhangkailintpl@163.com
Cite this article:

Yu ZHANG,Kai-lin ZHANG,Yuan YAO. Impact of rotating and thermal effects on leakage performance of gearbox with axial labyrinth seal. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1656-1662.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.09.003     OR     http://www.zjujournals.com/eng/Y2019/V53/I9/1656


旋转与热效应对齿轮箱轴向迷宫密封泄漏特性的影响

探索润滑油与理想气体混合介质下齿轮箱密封泄漏机理,分析转子旋转效应和热效应对迷宫密封泄漏特性的影响,研究旋转效应和热效应造成密封系统转子结构变形和流场变化导致密封性能变化的影响规律. 研究结果表明:旋转效应和热效应减小了迷宫密封间隙宽度,其中,热效应膨胀变形量高于旋转效应离心变形一个量级;转子转速存在一个阈值(4 000 r/min),当转速超过阈值时,迷宫密封泄漏量明显降低,当转子转速为10 000 r/min时,相对无旋转工况,泄漏量下降了18.5%;润滑油温度升高,黏度降低,密封结构的泄漏量呈近线性增大,当温度为140 °C时,相比温度为40 °C工况,泄漏量上升了58.6%;旋转效应和热效应造成流场变化是影响密封系统泄漏特性的主要因素,结构变形是次要因素.


关键词: 高速齿轮箱,  轴向迷宫密封,  旋转效应,  热效应,  两相流 
Fig.1 Structure configuration of bilateral cavities straight through labyrinth seal
t/ °C υ/(mm2·s?1 t/ °C υ/(mm2·s?1
40 116 120 5.6
80 21.8 140 2.9
100 16.6 ? ?
Tab.1 Kinetic viscosity of lubricating oil under different temperatures
Fig.2 Relation of oil leakage loss and grid number
Fig.3 Discharge coefficient comparison of simulated and experimental results under different seal clearance widths
Fig.4 Centrifugal deformation of rotor under different rotation speeds and radii
t/ °C λ/(°C?1 t/ °C λ/(°C?1
0 10.76 100 11.53
50 11.12 150 11.88
Tab.2 Linear thermal-expansion coefficients of material Q345
Fig.5 Expansive deformation of rotor under differenttemperature and radii
Fig.6 Relation of seal gap ratio and leakage loss ratio
Fig.7 Curve for lubricating oil leakage loss and leakage loss ratio under different rotation speeds and radii
Fig.8 Curves for oil leakage loss and leakage loss ratio under different oil temperatures
n/(r·min?1 r1/% r2/% r/%
0 0 0 0
2 000 ?0.13 ?0.52 ?0.65
4 000 ?0.18 ?1.44 ?1.62
6 000 ?0.46 ?3.86 ?4.32
8 000 ?0.76 ?10.81 ?11.57
10 000 ?1.14 ?17.31 ?18.45
Tab.3 Lubricating oil leakage loss under different rotation speeds
t/ °C r1/% r2/% r/%
40 0 0 0
60 ?6.99 32.63 25.64
80 ?13.80 52.49 38.69
100 ?17.12 63.54 46.42
120 ?20.41 75.55 55.14
140 ?24.66 83.29 58.63
Tab.4 Lubricating oil leakage loss under different oil drops temperature
[1]   杜发青, 吉洪湖, 帅海山, 等 齿形几何参数对直通篦齿封严泄漏特性影响的正交实验[J]. 航天动力学报, 2013, 28 (4): 825- 831
DU Fa-qing, JI Hong-hu, SHUAI Hai-shan, et al Orthogonal experiment of effect of fin geometrical parameters on leakage of straight-through labyrinth seals[J]. Journal of Aerospace Power, 2013, 28 (4): 825- 831
[2]   李军, 吕强, 丰镇平 高低齿迷宫式汽封泄漏流动特性研究[J]. 机械工程学报, 2006, 42 (5): 165- 168
LI Jun, LU Qiang, FENG Zhen-ping Research on the leakage flow characteristics in the stepped labyrinth seal[J]. Chinese Journal of Mechanical Engineering, 2006, 42 (5): 165- 168
doi: 10.3321/j.issn:0577-6686.2006.05.031
[3]   TONG S K, KYU S C Comparative analysis of the influence of labyrinth seal configuration on leakage behavior[J]. Journal of Mechanical Science and Technology, 2009, 23 (10): 2830- 2838
doi: 10.1007/s12206-009-0733-5
[4]   LIN Z R, WANG X D, YUAN X, et al Investigation and improvement of the staggered labyrinth seal[J]. Chinese Journal of Mechanical Engineering, 2015, 28 (2): 402- 408
doi: 10.3901/CJME.2015.0106.005
[5]   TANG H, WANG S J, ZHAO J Effect of fluid-structure interaction on sealed flow filed and leakage rate base on computational fluid dynamics[J]. Journal of Shanghai Jiaotong University, 2015, 20 (3): 326- 330
doi: 10.1007/s12204-015-1631-x
[6]   LI J, QIU B, FENG Z P Experimental and numerical investigations on the leakage flow characteristics of the labyrinth brush seal[J]. Journal of Engineering for Gas Turbines and Power, 2013, 1547 (1): 164- 172
[7]   SIVAKUMAR S P, SEKHAR A S, PRASAD BVSSS Influence of combined radial location and growth on the leakage performance of a rotating labyrinth gas turbine seal[J]. Journal of Mechanical Science and Technology, 2015, 29 (6): 2535- 2545
doi: 10.1007/s12206-015-0545-8
[8]   SIVAKUMAR S P, SEKHAR A S, PRASAD BVSSS On the choice of initial clearance and prediction of leakage flow rate for a rotating gas turbine seal[J]. Journal of Mechanical Engineering Science, 2016, 230 (10): 1586- 1601
doi: 10.1177/0954406215581692
[9]   SIVAKUMAR S P, SEKHAR A S, PRASAD BVSSS Assessment of analytical predictions for radial growth of rotating labyrinth seals[J]. International Journal of Turbo and Jet-Engines, 2016, 35 (3): 265- 279
[10]   SIVAKUMAR S P, SEKHAR A S, PRASAD BVSSS Rotor dynamic characteristics of rotating labyrinth gas turbine seal with centrifugal growth[J]. Tribology International, 2016, 97 (2): 349- 359
[11]   SIVAKUMAR S P, SEKHAR A S, PRASAD BVSSS Rotor dynamic characterization of rotating labyrinth gas turbine seals with radial growth: combined centrifugal and thermal effects[J]. International Journal of Mechanical Science, 2017, 123 (4): 1- 19
[12]   YAHYA D, MUSTAFA C S, AHMET S B Computational fluid dynamics investigation of labyrinth seal leakage performance depending on mushroom-shaped tooth wear[J]. Journal of Engineering for Gas Turbines and Power, 2016, 138 (3): 032503?1- 10
[13]   陈尧兴, 李志刚, 晏鑫, 等 迷宫齿蘑菇型磨损时密封泄漏特性和转子动力特性系数研究[J]. 西安交通大学学报, 2018, 52 (1): 1- 7
CHEN Yao-xing, LI Zhi-gang, YAN Xin, et al Investigations on the leakage performance and rotor dynamic coefficients of labyrinth seal with mushroom-shaped tooth wear[J]. Journal of Xi’an Jiaotong University, 2018, 52 (1): 1- 7
[14]   BONDARENKO G A, BAGA V N, BASHLAK I A Flow simulation in a labyrinth seal[J]. Applied Mechanics and Materials, 2014, 630 (9): 234- 239
[15]   孔晓治, 刘高文, 雷昭, 等 转速对压气机级间篦齿封严影响的实验[J]. 航天动力学报, 2016, 31 (7): 1575- 1582
KONG Xiao-zhi, LIU Gao-wen, LEI Zhao, et al Experiment on influence of rotational speeds on labyrinth seal in compressor stator well[J]. Journal of Aerospace Power, 2016, 31 (7): 1575- 1582
[16]   李志刚, 李军, 丰镇平 迷宫密封泄漏特性影响因素的研究[J]. 西安交通大学学报, 2010, 44 (3): 16- 20
LI Zhi-gang, LI Jun, FENG Zhen-ping Effects of gap pressure ratio and rotational speed on discharge behavior of labyrinth seal[J]. Journal of Xi’an Jiaotong University, 2010, 44 (3): 16- 20
[17]   周国宇, 王旭东, 林智荣, 等 高低齿迷宫密封泄漏量实验及计算分析[J]. 工程热物理学报, 2015, 36 (9): 1889- 1893
ZHOU Guo-yu, WANG Xu-dong, LIN Zhi-rong, et al Preliminary analysis to the leakage of the staggered labyrinth seal based on experiment and simulation[J]. Journal of Engineering Thermophysics, 2015, 36 (9): 1889- 1893
[1] Yu ZHANG,Yi-cai LIU. Progress in two-phase flow-induced noise of small scale refrigeration system[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 775-792.
[2] Jing-zhi ZHANG,Wu-kai CHEN,Nai-xiang ZHOU,Li LEI,Fu-shun LIANG. Experiment study on formation and length of droplets in T-junction microchannels[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 1007-1013.
[3] Yu-qi HUANG,Zhuo-lie CHEN,Jun-qiang HU,Mei LI,Hao-yi NIU. Visual simulation of two-phase flow oscillating flow in piston cooling gallery[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 435-441.
[4] CHEN Wen-zhuo, CHEN Yan, ZHANG Wei-ming, HE Shao-wei, LI Bo, JIANG Jun-ze. Numerical simulation for dynamic air spray painting of arc surfaces[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(12): 2406-2413.
[5] DONG Kang, ZHOU Hao, YANG Yu, WANG Ling-li, CEN Ke-fa. Influence of mass flow rate of secondary air on gas/solid flow characteristics of a swirl burner[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(12): 2162-2171.
[6] ZHOU Hao, WU Jian-bo, YANG Yv, LI Ya-peng, HU Shan-tao, CEN Ke-fa. Experimental measurement of gas-solid two-phase flow of
a swirl burner by optical wave method
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(12): 2189-2193.
[7] TUN Hua-Cheng, WANG Fu, PU Shi-Liang, PU Xin-Guo, YUAN Tian-Fu, CHEN Ling-Gong, CEN Ge-Fa. Particle identification and location measurement in digital
inline holography
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(4): 765-770.
[8] WANG Yong, KONG Lian-Wei, GUO Ai-Guo, BAI Wei. Effects of gas release rate on gaswater migration in
shallow gas reservoir
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(10): 1883-1889.
[9] YAN Jian-Hua, LIU E-Na, LI Xiao-Dong, et al. Degradation of methyl violet solution by gas-liquid gliding arc discharge under different carrier gases[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(5): 931-936.
[10] YIN Dun-Lian, JIAO Lei, CHOU Xing-Qi, et al. Numerical and experimental investigation of flow in swirling nozzle[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(5): 968-972.