Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (9): 1663-1673    DOI: 10.3785/j.issn.1008-973X.2019.09.004
Mechanical Engineering     
Intelligent recognition method for working-cycle state of hydraulic excavator
Jie HUANG1,2(),Dong WANG1,3,*(),Xin-qing WANG1,Qin YIN1,Fa-ming SHAO1
1. College of Field Engineering, Army Engineering University of PLA, Nanjing 210007, China
2. Engineering University of PAP, Urumqi Campus, Urumqi 830049, China
3. Second Institute of Engineering Research and Design,Southern Theatre Command, Kunming 650222, China
Download: HTML     PDF(1536KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A novel intelligent recognition method based on the combination of PCA-SVM and feature extraction with sliding time-window was proposed to recognize each state in working cycle stages of hydraulic excavator. The pressure signals of two pumps were taken as recognizing object, and small waveform segments of each state in a working cycle of hydraulic excavator were intercepted by adopting sliding time-window method. The corresponding time domain and frequency domain parameters of all waveform segments were extracted and the eigenvalue normalization was carried out. The normalized set was used as input feature set after reduction of dimensionality with principal component analysis (PCA), then state classification was conducted by adopting the SVM algorithm, and the effects of sliding time-window width and overlap rate to the recognition accuracy were discussed, respectively. Besides, a real-time correction strategy was introduced to automatically check and correct the direct recognition results; the misjudgment results against the logic rule of excavator operation was verified, and the recognition accuracy was improved from 80.85% to 89.36%. Results prove that the proposed method can realize the state recognition of each stage in a working cycle of hydraulic excavator effectively and accurately.



Key wordshydraulic excavator      working cycle      state recognition      SVM      real-time correction strategy     
Received: 22 July 2018      Published: 12 September 2019
CLC:  TU 621  
Corresponding Authors: Dong WANG     E-mail: huangjie051501@126.com;dyhkxydfbb@163.com
Cite this article:

Jie HUANG,Dong WANG,Xin-qing WANG,Qin YIN,Fa-ming SHAO. Intelligent recognition method for working-cycle state of hydraulic excavator. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1663-1673.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.09.004     OR     http://www.zjujournals.com/eng/Y2019/V53/I9/1663


液压挖掘机作业循环状态智能识别方法

为实现液压挖掘机作业循环阶段状态的自动识别,提出采用时窗滑移特征提取与PCA-SVM相结合的方法. 以液压挖掘机2个主泵压力信号为研究对象,采用时窗滑移截取各阶段状态的小段波形,提取所有截取波段相应的时频参数并进行特征值归一化,经PCA降维处理后作为输入特征集,采用SVM进行状态分类,并分别讨论时窗宽度与重叠率对识别准确率的影响. 引入即时校正策略,对直接识别结果进行自动检验校正,纠正不符合挖掘机循环作业逻辑规则的误判结果,从而使识别准确率由80.85%提高到89.36%. 实验结果表明,所提方法能准确有效地实现液压挖掘机作业循环各阶段状态的自动识别.


关键词: 液压挖掘机,  作业循环,  状态识别,  支持向量机(SVM),  即时校正策略 
Fig.1 Major movements of hydraulic excavator
Fig.2 Installation diagram of two pump pressure sensors
Fig.3 Diagram of hydraulic excavator’s working cycle
Fig.4 Control schematic of hydraulic system
Fig.5 Pressure waveform of digging stage
Fig.6 Pressure waveform of lifting stage
Fig.7 Identification process of working cycle state of hydraulic excavator
Fig.8 Schematic diagram of time-window sliding process
Fig.9 Feature set disposed by PCA
$\Delta t$/s Q1/ % Q2/ % $\Delta t$/s Q1/ % Q2/ %
0.1 45.05 45.33 0.6 76.56 82.79
0.2 70.31 77.82 0.7 75.64 79.11
0.3 73.41 77.75 0.8 76.88 84.78
0.4 73.36 74.55 0.9 76.67 81.86
0.5 80.22 86.40 1.0 74.76 81.97
Tab.1 Comparison of detailed results of direct recognition and correction when time-window width changing
$\varphi $ Q1/ % Q2/ % $\varphi $ Q1/ % Q2/ %
0 80.22 86.40 0.500 76.64 82.57
0.125 80.72 88.01 0.625 75.28 82.69
0.250 81.21 88.50 0.750 76.14 82.69
0.375 78.74 85.66 ? ? ?
Tab.2 Detailed results of direct recognition and correction when overlap changing
实际状态 Q $/$% N Nr
S1 86.86 175 152
S2 77.42 62 48
S3 78.43 102 80
S4 62.32 69 43
S5 53.20 94 50
S6 88.62 167 148
S7 97.14 140 136
总计 81.21 809 657
Tab.3 Direct recognition details of optimal values
w/Ne 误判状态
S1 S2 S3 S4 S5 S6 S7



S1 ? 0.057 1/10 ? ? ? 0.068 6/12 0.005 7/1
S2 0.012 9/8 ? ? 0.080 6/5 ? 0.016 1/1 ?
S3 ? ? ? ? 0.215 7/22 ? ?
S4 0.029 0/2 0.275 4/19 ? ? ? 0.058 0/4 0.014 5/1
S5 0.053 2/5 ? 0.414 9/39 ? ? ? ?
S6 0.060 0/10 ? 0.018 0/3 0.006 0/1 ? ? 0.030 0/5
S7 ? ? ? ? ? 0.028 6/4 ?
总计 0.030 9/25 0.035 8/29 0.051 9/42 0.007 4/6 0.027 2/22 0.025 9/21 0.008 6/7
Tab.4 Misjudgment details of optimal values
Fig.10 Direct recognition result and real state of typical working cycle
Fig.11 Real-time correction results and real state
[1]   谢科. 基于环境识别平台的挖掘机智能作业试验系统研制[D]. 杭州: 浙江大学, 2016.
XIE Ke. Research and development of excavator intellig- ent operation test system based on environment identification platform[D]. Hangzhou: Zhejiang University, 2016.
[2]   朱建新, 沈东羽, 吴钪 基于激光点云的智能挖掘机目标识别[J]. 计算机工程, 2017, 43 (1): 297- 302
ZHU Jian-xin, SHEN Dong-yu, WU Kang Target recognition for intelligent excavator based on laser point cloud[J]. Computer Engineering, 2017, 43 (1): 297- 302
doi: 10.3969/j.issn.1000-3428.2017.01.051
[3]   TANAKA M, DOISHITA K. Method and system for supporting fuel cost saving operation of construction machine: JP, 082506 [P]. 2008-10-09.
[4]   柳齐. 基于动作序列识别的挖掘机智能节能方法研究[D]. 厦门: 华侨大学, 2014.
LIU Qi. Intelligent energy-saving method research of excavator based on identifying the sequence of actions [D]. Xiamen: Huaqiao University, 2014.
[5]   郝鹏, 何清华, 张新海, 等 挖掘机负载和工况识别技术研究[J]. 液压气动与密封, 2008, 28 (5): 8- 13
HAO Peng, HE Qing-hua, ZHANG Xin-hai, et al Study on load and operation mode identification of excavator[J]. Hydraulic Pneumatics and Seal, 2008, 28 (5): 8- 13
doi: 10.3969/j.issn.1008-0813.2008.05.003
[6]   ZAROTTI, S, PAOLUZZI R, GANASSI G, et al. Analysis of hydraulic excavator working cycle [C] // Proceedings of the 11th European Regional Conference of the ISTVS. Bremen: ISTVS, 2009: 153-160.
[7]   于洪光, 高峰, 柳桂国, 等 液压挖掘机标准负载工况的研究[J]. 机电工程, 2013, 30 (1): 43- 46
YU Hong-guang, GAO Feng, LIU Gui-guo, et al Research of standard load condition of hydraulic excavator[J]. Journal of Mechanical and Electrical Engineering, 2013, 30 (1): 43- 46
[8]   TIMUSK M A, LIPSETTM G, MCBAIN J, et al Automated operating mode classification for online monitoring systems[J]. Journal of Vibration and Acoustics, 2009, 131 (4): 1124- 1124
[9]   MINTAH B, PRICE R J, KING K D, et al. Adaptive work cycle control system: US, 8024095 [P]. 2011-09-20.
[10]   冯培恩, 彭贝, 高宇, 等 液压挖掘机作业循环阶段的智能识别[J]. 浙江大学学报: 工学版, 2016, 50 (2): 209- 217
FENG Pei-en, PENG Bei, GAO Yu, et al Intelligent identification for working-cycle stages of hydraulic excavator[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (2): 209- 217
[11]   杨永文 詹阳GJW111高原型挖掘机[J]. 工程机械与维修, 2010, (5): 145- 145
YANG Yong-wen GJW111 plateau excavator of Zhanyang[J]. Construction Machinery and Maintenance, 2010, (5): 145- 145
doi: 10.3969/j.issn.1006-2114.2010.05.032
[12]   刘志东, 李莺莺, 杨清淞, 等 挖掘机液压系统载荷数据测试方法研究[J]. 工程机械, 2013, 44 (3): 18- 25
LIU Zhi-dong, LI Ying-ying, YANG Qing-song, et al Research on test method of payload data of the excavator ’s hydraulic system[J]. Construction Machinery and Equipment, 2013, 44 (3): 18- 25
doi: 10.3969/j.issn.1000-1212.2013.03.006
[13]   陈仁祥, 陈思杨, 杨黎霞, 等 基于振动敏感时频特征的航天轴承寿命状态识别方法[J]. 振动与冲击, 2016, 35 (17): 134- 139
CHEN Ren-xiang, CHEN Si-yang, YANG Li-xia, et al Life state recognition method for space bearings based on sensitive time-frequency features of vibration[J]. Journal of Vibration and Shock, 2016, 35 (17): 134- 139
[14]   时培明, 梁凯, 赵娜, 等 基于深度学习特征提取和粒子群支持向量机状态识别的齿轮智能故障诊断[J]. 中国机械工程, 2017, 28 (9): 1056- 1061
SHI Pei-ming, LIANG Kai, ZHAO Na, et al Intelligent fault diagnosis for gears based on deep learning feature extraction and particle swarm optimization SVM state identification[J]. China Mechanical Engineering, 2017, 28 (9): 1056- 1061
doi: 10.3969/j.issn.1004-132X.2017.09.009
[15]   YANG C Y, WU T Y Diagnostics of gear deterioration using EEMD approach and PCA process[J]. Measurement, 2015, 61: 75- 87
doi: 10.1016/j.measurement.2014.10.026
[16]   刘金刚, 周晓群, 王凯 基于PCA和SVM的盾构液压系统故障诊断[J]. 计算机仿真, 2017, (12): 426- 430
LIU Jin-gang., ZHOU Xiao-qun, WANG Kai. Fault diagnosis of hydraulic system for shield machine based on PCA and SVM[J]. Computer Simulation, 2017, (12): 426- 430
doi: 10.3969/j.issn.1006-9348.2017.12.094
[1] Xin-zhi GAO,Zuo-jun LIU,Yan ZHANG,Ling-ling CHEN. Bicycle riding phase recognition of lower limb amputees based on GWO-SVM[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 648-657.
[2] Chang CAI,Yi-xiang HUANG,Hong-wen XING. State recognition for fuselage join based on gradient boosting tree[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1274-1281.
[3] Ying SUN,Yan-xiang HU,Xue-ying ZHANG,Shu-fei DUAN. Prediction of emotional dimensions PAD for emotional speech recognition[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 2041-2048.
[4] DU Ming-yu, BAO Guan-jun, YANG Qing-hua, WANG Zhi-heng, ZHANG Li-bin. Novel method in pattern recognition of hand actions based on improved support vector machine[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(7): 1239-1246.
[5] ZHAO Xiao-dong, LIU Zuo-jun, CHEN Ling-ling, YANG Peng. Approach of running gait recognition for lower limb amputees[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 1980-1988.
[6] LI Lin-wei, WU Yi-ping, MIAO Fa-sheng. Prediction of non-equidistant landslide displacement time series based on grey wolf support vector machine[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 1998-2006.
[7] YUAN Hong, WANG Bo, WANG Li, XU Mu-xun. Emotional classification and prediction of body movements based on silhouette[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(1): 160-165.
[8] ZHU Dong-yang, SHEN Jing-yi, HUANG Wei-ping, LIANG Jun. Fault classification based on modified active learning and weighted SVM[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(4): 697-705.
[9] LIAO Miao, ZHAO Yu-qian, ZENG Ye-zhan, HUANG Zhong-chao, ZHANG Bing-kui, ZOU Bei-ji. Automatic segmentation for cell images based on support vector machine and ellipse fitting[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(4): 722-728.
[10] XIE Luo feng, XU Hui ning, HUANG Qin yuan, ZHAO Yue, YIN Guo fu. Application of DTCWPT and NCA-LSSVM to inspect internal defects of magnetic tile[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(1): 184-191.
[11] ZHONG Wei, PENG Liang, ZHOU Yong gang, XU Jian, CONG Fei yun. Slagging diagnosis of boiler based on wavelet packet analysis and support vector machine[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(8): 1499-1506.
[12] ZHAO Ling, HUANG Ping jie, LIU Bao ling, ZHAO Shu hao,HOU Di bo, ZHANG Guang xin. Pulsed eddy current detection and analysis method for internal state of multi layer conductive structure[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(4): 603-608.
[13] FENG Pei en, PENG Bei, GAO Yu, QIU Qing ying. Intelligent identification for working cycle stages of hydraulic excavator[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(2): 209-217.
[14] PAN Xiang, TONG Wei huai, ZHANG San yuan,ZHENG He rong. Segmentation of animation character model by combining semantic ontology and Poisson equation[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(9): 1634-1641.
[15] TAN Hailong, LIU Kangling, JIN Xin, SHI Xiang rong, LIANG Jun. Multivariate time series classification based on μσ-DWC feature and tree-structured M-SVM[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(6): 1061-1069.