Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (5): 1007-1017    DOI: 10.3785/j.issn.1008-973X.2025.05.014
    
Multi-objective parameter optimization of gapping device for electromagnetic hybrid coupler
Shuang WANG1,2,3(),Shousuo SUN2,3,Yongcun GUO1,2,3,Zeyong HU2,3
1. State Key Laboratory of Digital and Intelligent Technology for Unmanned Coal Mining, Anhui University of Science and Technology, Huainan 232001, China
2. Collaborative Innovation Center of Mine Intelligent Equipment and Technology, Anhui University of Science and Technology, Huainan 232001, China
3. School of Electrical and Mechanical Engineering, Anhui University of Science and Technology, Huainan 232001, China
Download: HTML     PDF(2654KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A new electromagnetic hybrid magnetic coupler was proposed aiming at the problems of large volume and low adjustment precision that generally exist in the gapping mechanism of the double-disk magnetic coupler. The precise gapping of the magnetic coupler can be achieved through electromagnetic drive. Multi-objective optimization of the core component electromagnetic gapping device was conducted with average thrust and thrust fluctuation as the objectives. The dung beetle optimization algorithm optimization BP neural network model (DBO-BP) and the multi-objective golden jackal optimization algorithm (MOGJO) were proposed based on the sensitivity analysis for hierarchical optimization of design parameters in order to determine the optimal parameters of the electromagnetic gapping device by combining the response surface method and the scanning method. The thrust waveform, induced electromotive force, magnetic induction and magnetic field line distribution were analyzed based on the finite element method. The optimized radial air-gap magnetic induction was improved by 19%, the average thrust was improved by 57.8%, and the thrust fluctuation ratio was reduced by 28.3%. The excellent performance of the final design with respect to the initial design and the correctness of the multi-objective parameter grading optimization of the new magnetic coupler were verified.



Key wordsmagnetic coupler      electromagnetically regulated air gap      DBO-BP neural network      multi-objective golden jackal optimization (MOGJO) algorithm      multi-objective parameter optimization     
Received: 12 March 2024      Published: 25 April 2025
CLC:  TH 133  
Fund:  安徽省高校杰出青年科研资助项目(2022AH020056);国家自然科学基金资助项目(52274152, 52404160);安徽省自然科学优秀青年科研基金资助项目(2308085Y37).
Cite this article:

Shuang WANG,Shousuo SUN,Yongcun GUO,Zeyong HU. Multi-objective parameter optimization of gapping device for electromagnetic hybrid coupler. Journal of ZheJiang University (Engineering Science), 2025, 59(5): 1007-1017.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.05.014     OR     https://www.zjujournals.com/eng/Y2025/V59/I5/1007


电磁混合式耦合器调隙装置多目标参数优化

针对双盘式磁力耦合器的调隙机构普遍存在的体积大、调节精度低的问题,提出新型的电磁混合式磁力耦合器,通过电磁驱动可以实现磁力耦合器的精准调隙. 以平均推力和推力波动为目标,对核心构件电磁调隙装置进行多目标优化. 基于敏感度分析对设计参数进行分级优化,提出蜣螂优化算法优化BP神经网络模型(DBO-BP)和多目标金豺优化算法(MOGJO),结合响应面法和扫描法,确定电磁调隙装置的最优参数. 基于有限元法对推力波形、感应电动势、磁感应强度及磁场线分布进行分析,优化后径向气隙磁感应强度提升了19%,平均推力提升了57.8%,推力波动比值降低了28.3%,验证了最终设计相对于最初设计的优异性能以及新型磁力耦合器多目标参数分级优化的正确性.


关键词: 磁力耦合器,  电磁调隙,  DBO-BP神经网络,  多目标金豺优化(MOGJO)算法,  多目标参数优化 
Fig.1 Structure of new electromagnetic hybrid magnetic coupler
Fig.2 Structural diagram of regulating air gap device
Fig.3 Two-dimensional analytical model of magnetic field of electromagnetically regulated air gap device
Fig.4 Magnetic induction of radial air gap
Fig.5 Magnetic induction of axial air gap
Fig.6 Initial model thrust of electromagnetic gap device
Fig.7 Schematic representation of structural parameter of electromagnetic gap shifter
结构参数初始值优化范围
Bc/mm32~4
Bpm/mm4.753.5~5.5
Lpm/mm3.22.5~3.5
g/mm10.5~1.5
hs/mm88~13
bs/mm2.52.0~3.0
hm/mm1.51.0~2.0
Ks0.750.70~0.80
Bs/mm22~6
Tab.1 Initial value and variation range of structural parameters to be optimized
结构参数平均推力方差推力波动方差
Bc/mm2301.431399.601
Bpm/mm2514.8888172.1289
Lpm/mm265.0598165.95046
g/mm21162.585833.3832
hs/mm20.4992077.820106
bs/mm2128.716224.96842
hm/mm22.83465531.65431
Ks1.0586553.606926
Bs/mm20.90960748.59293
Tab.2 Variance of mean thrust and thrust fluctuation
Fig.8 Sensitivity analysis result for structural parameter
Fig.9 Flowchart for hierarchical optimization
代理模型平均推力推力波动
RMSERRMSER
BP1.285 40.994 132.291 20.924 24
PSO-BP1.207 60.994 822.143 30.923
DBO-BP1.111 30.994 711.846 70.931
Tab.3 Test of fitting effectiveness of different proxy models
Fig.10 Pareto chart for first level
Bc/mmBpm/mmg/mmFavg/NFripple/N
A45.50.711 471.221 824.782 1
B3.165 23.50.610 948.447 79.634 0
C2.576 23.50.938 136.122 76.296 7
Tab.4 Initial point for level 2 optimization
序号组合ABC
Lpm/mmhm/mmbs/mmBs/mmFavg/NFripple/NFavg/NFripple/NFavg/NFripple/N
131.52.5472.3511726.1251746.3657617.6021135.149829.107080
2323.0462.0370915.9084039.2813714.8223629.361099.251430
$\vdots $$\vdots $$\vdots $$\vdots $$\vdots $$\vdots $$\vdots $$\vdots $$\vdots $$\vdots $$\vdots $
28312.5272.7199521.2853547.6557915.4961635.348298.254580
29322.5671.4616524.2671646.5792716.6391934.0681111.20004
Tab.5 Box-Behnken experimental design and result of medium sensitivity parameter
Fig.11 Partial response surface at point A, B, C
Fig.12 Pareto chart for secondary optimization
Lpm/mmhm/mmbs/mmBs/mmFavg/NFripple/N
a3.449886222?74.04259.860152
b2.995349222?52.269111.59230
c2.8297791.76345122?37.87837.298239
Tab.6 Initial point for level 3 optimization
Fig.13 Time comparison box-plot
序号结构参数序号结构参数
Kshs/mmKshs/mm
10.708100.7011
20.758110.7511
30.808120.8011
40.709130.7012
50.759140.7512
60.809150.8012
70.7010160.7013
80.7510170.7513
90.8010180.8013
Tab.7 Scanning table of weak sensitivity design parameter
Fig.14 Scanning result graph of weak sensitivity parameter
结构参数数值
优化前优化后
Bc/mm34
Bpm/mm4.755.5
Lpm/mm3.23.45
g/mm10.71
hs/mm811
bs/mm2.52
hm/mm1.52
Ks0.750.7
Bs/mm22
Favg/N47.50838074.960875
Fripple/N10.36786011.725269
Tab.8 Comparison of parameter before and after optimization
Fig.15 Magnetic induction of radial air gap after optimization
Fig.16 Magnetic induction of axial air gap after optimization
Fig.17 Thrust waveform before and after optimization
Fig.18 Waveform of induced electromotive force before and after optimization
Fig.19 Comparison of magnetic lines of force
Fig.20 Comparison of magnetic induction
[1]   杨超君, 袁爱仁, 陈子清, 等 盘式实心异步磁力耦合器的机械特性与调速特性[J]. 电机与控制学报, 2019, 23 (5): 110- 118
YANG Chaojun, YUAN Airen, CHEN Ziqing, et al Mechanical properties and adjustable-speed characteristics of axial-flux-solid-type asynchronous magnetic couplers[J]. Electric Machines and Control, 2019, 23 (5): 110- 118
[2]   张炳义, 冯永, 冯桂宏, 等 轴向磁通调速磁力耦合器漏磁系数分析计算与试验研究[J]. 电机与控制学报, 2019, 23 (3): 73- 80
ZHANG Bingyi, FENG Yong, FENG Guihong, et al Calculation method of magnetic flux leakage coefficient and experimental study of permanent magnet coupler with axial magnetic flux[J]. Electric Machines and Control, 2019, 23 (3): 73- 80
[3]   WANG J, ZHU J A simple method for performance prediction of permanent magnet eddy current couplings using a new magnetic equivalent circuit model[J]. IEEE Transactions on Industrial Electronics, 2018, 65 (3): 2487- 2495
doi: 10.1109/TIE.2017.2739704
[4]   FLORIO F, SINHA G, SUNDARARAMAN R Designing high-accuracy permanent magnets for low-power magnetic resonance imaging[J]. IEEE Transactions on Magnetics, 2018, 54 (5): 1- 9
[5]   MOHAMMADI S, MIRSALIM M, VAEZ-ZADEH S, et al Analytical modeling and analysis of axial-flux interior permanent-magnet couplers[J]. IEEE Transactions on Industrial Electronics, 2014, 61 (11): 5940- 5947
doi: 10.1109/TIE.2014.2311391
[6]   ABEROOMAND V, MIRSALIM M, FESHARAKIFARD R Design optimization of double-sided permanent-magnet axial eddy-current couplers for use in dynamic applications[J]. IEEE Transactions on Energy Conversion, 2019, 34 (2): 909- 920
doi: 10.1109/TEC.2018.2880679
[7]   ARSLAN S, ISKENDER I, NAVRUZ T S Fem-based optimal design and testing of synchronous magnetic coupling for aerospace starter/generator applications[J]. Engineering Science and Technology: an International Journal-Jestech, 2023, 41 (3): 1042- 1060
[8]   ALSHAMMARI S, LAZARI P, ATALLAH K Comparison of eddy current coupling topologies for high efficiency mechanical power transmission[J]. IEEE Transactions on Energy Conversion, 2023, 38 (2): 982- 992
doi: 10.1109/TEC.2022.3217347
[9]   葛研军, 周凯凯, 刘艳龙, 等 磁力耦合器调速机构研究[J]. 大连交通大学学报, 2014, 35 (3): 32- 36
GE Yanjun, ZHOU Kaikai, LIU Yanlong, et al Research on the speed regulation mechanism of magnetic coupling[J]. Journal of Dalian Jiaotong University, 2014, 35 (3): 32- 36
doi: 10.3969/j.issn.1673-9590.2014.03.008
[10]   杨超君, 吉城龙, 张秀文, 等 筒式异步磁力耦合器的转矩与调速关系研究[J]. 电机与控制学报, 2019, 23 (1): 108- 116
YANG Chaojun, JI Chenglong, ZHANG Xiuwen, et al Torque and adjustable-speed relation for drum-type asynchronous magnetic couplers[J]. Electric Machines and Control, 2019, 23 (1): 108- 116
[11]   杨超君, 朱莉, 吴盈志, 等 开槽型盘式异步磁力耦合器调速特性[J]. 电机与控制学报, 2021, 25 (11): 130- 138
YANG Chaojun, ZHU Li, WU Yingzhi, et al Speed-control characteristics of slotted-type axial-flux asynchronous magnetic couplers[J]. Electric Machines and Control, 2021, 25 (11): 130- 138
[12]   周凯凯, 史岳鹏, 李骞, 等 永磁式异步磁力耦合器设计及分析[J]. 机械设计与研究, 2022, 38 (3): 184- 188
ZHOU Kaikai, SHI Yuepeng, LI Qian, et al Design and analysis of a permanent magnetic asynchronous coupler[J]. Machine Design and Research, 2022, 38 (3): 184- 188
[13]   葛研军, 刘述良, 王建帅 锥形转子磁力耦合器调速机理研究[J]. 制造技术与机床, 2022, (5): 77- 83
GE Yanjun, LIU Shuliang, WANG Jianshuai Study on speed-regulation mechanism of cone-rotor magnetic coupler[J]. Manufacturing Technology and Machine Tool, 2022, (5): 77- 83
[14]   LI Y, LIN H, HUANG H, et al Analysis and performance evaluation of an efficient power-fed permanent magnet adjustable speed drive[J]. IEEE Transactions on Industrial Electronics, 2019, 66 (1): 784- 794
doi: 10.1109/TIE.2018.2832018
[15]   杨超君, 戚玉堂, 丁逸飞, 等 温度影响下的开槽盘式磁力耦合器调速特性[J]. 电机与控制学报, 2024, 28 (1): 69- 77
YANG Chaojun, QI Yutang, DING Yifei, et al Speed regulation performance of slotted-type axial-flux magnetic couplers under temperature influence[J]. Electric Machines and Control, 2024, 28 (1): 69- 77
[16]   程苗苗, 翟朋辉, 张英杰, 等 基于自学习非线性PID的音圈电机精密定位系统[J]. 电工技术学报, 2023, 38 (6): 1519- 1530
CHENG Miaomiao, ZHAI Penghui, ZHANG Yingjie, et al A voice coil motor-driven precision positioning system based on self-learning nonlinear PID[J]. Transactions of China Electrotechnical Society, 2023, 38 (6): 1519- 1530
[17]   陈晓丹, 吴澳, 赵睿杰, 等 磁悬浮无轴离心泵叶轮转子动力学特性[J]. 浙江大学学报: 工学版, 2023, 57 (8): 1680- 1688
CHEN Xiaodan, WU Ao, ZHAO Ruijie, et al Rotor dynamics of impeller in a magnetic suspension bearingless centrifugal pump[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (8): 1680- 1688
[18]   付东山, 贾泽宇, 吴富强, 等 新型斜气隙圆筒型横向磁通切换直线电机及其建模分析[J]. 中国电机工程学报, 2022, 42 (15): 5706- 5719
FU Dongshan, JIA Zeyu, WU Fuqiang, et al Novel oblique air-gap tubular transverse flux switching permanent magnet linear motors and its modeling analysis[J]. Proceedings of the CSEE, 2022, 42 (15): 5706- 5719
[19]   王明杰, 李彦彦, 焦留成, 等 永磁游标直线电机磁场解析计算[J]. 电机与控制学报, 2017, 21 (10): 54- 61
WANG Mingjie, LI Yanyan, JIAO Liucheng, et al Analytical magnetic field calculation of linear permanent magnet vernier motor[J]. Electric Machines and Control, 2017, 21 (10): 54- 61
[20]   曹晓彦, 于敏, 周瑾, 等 可调旋转式流体阻尼器参数多目标优化设计[J]. 浙江大学学报: 工学版, 2023, 57 (7): 1439- 1449
CAO Xiaoyan, YU Min, ZHOU Jin, et al Multi-objective optimization design of adjustable rotary fluid damper parameter[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (7): 1439- 1449
[21]   李祥林, 李金阳, 杨光勇, 等 电励磁双定子场调制电机的多目标优化设计分析[J]. 电工技术学报, 2020, 35 (5): 972- 982
LI Xianglin, LI Jinyang, YANG Guangyong, et al Multi-objective optimization analysis of electric-excitation double-stator field-modulated machine[J]. Transactions of China Electrotechnical Society, 2020, 35 (5): 972- 982
[22]   张德胜, 杨港, 赵旭涛, 等 基于BP神经网络的立式离心泵导叶与蜗壳优化设计[J]. 农业机械学报, 2022, 53 (4): 130- 139
ZHANG Desheng, YANG Gang, ZHAO Xutao, et al Optimization design of vane diffuser and volute in vertical centrifugal pump based on back propagation neural network[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53 (4): 130- 139
doi: 10.6041/j.issn.1000-1298.2022.04.013
[23]   XUE J, SHEN B Dung beetle optimizer: a new meta-heuristic algorithm for global optimization[J]. Journal of Supercomputing, 2022, 79 (7): 7305- 7336
[24]   REN C, AN N, WANG J, et al Optimal parameters selection for BP neural network based on particle swarm optimization: a case study of wind speed forecasting[J]. Knowledge-Based Systems, 2014, 56 (2): 226- 239
[25]   CHOPRA N, ANSARI M M Golden jackal optimization: a novel nature-inspired optimizer for engineering applications[J]. Expert Systems with Applications, 2022, 198 (4): 323- 336
[1] Ming LI,Jinhua ZHANG,Wenchao LI,Hongqi WANG,Jun HONG,Bin FANG. Local skidding characteristics of cylindrical roller bearing and its influencing factors[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(3): 577-587.
[2] Zhiqiang GENG,Wei CHEN,Bo MA,Yongming HAN. Bearing intelligent fault diagnosis method based on continuous wavelet convolutional neural network[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(10): 2069-2075.
[3] Ren-peng MO,Xiao-sheng SI,Tian-mei LI,Xu ZHU. Bearing life prediction based on multi-scale features and attention mechanism[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1447-1456.
[4] Hai-tong WU,Jin ZHOU,Li JI. Unbalance compensation of magnetically suspended rotor based on single phase coordinate transformation[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 963-971.
[5] Zheng–hai WU,Ying–qiang XU,Kai–an LIU,Xing ZHAO. Thermal film-forming ability of grease lubrication at roller-raceway pair in tapered roller bearings[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 459-466.
[6] Xiang-long ZHAO,Jie CHEN,Rong-jing HONG,Hua WANG,Yuan-yuan LI. Adaptive feature extraction method for slewing bearing based on Wavelet leader and optimized isometric mapping method[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2092-2101.
[7] Shuo-feng ZHAO,Xiao-yan HUANG,You-tong FANG. DC-link voltage fluctuation compensation for selected harmonics elimination under low switching frequency[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 388-398.
[8] JIANG Ke jian, ZHU Chang sheng. Vibration suppressing with mixed weight for multi-targets in active magnetic bearing-flexible rotor system[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(10): 1946-1951.
[9] LI Te,Rui Zhi yuan,LEI Chun li,GUO Jun feng,HU Chi bing. Simulation of thermal characteristics of high speed spindle considering air gap variation[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(5): 941-948.
[10] NING Feng ping, YAO Jian tao, SUN Kun, MA Ming zhen,ZHAO Yong sheng.
Effect of multi-factor coupling on thermal properties of space bearing
[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(1): 129-136.
[11] YUAN Xing, ZHANG You-yun, ZHU Yong-sheng, HONG Jun,QI Wen-chang. Fault degree evaluation for rolling bearing combining
backward inference with forward inference
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(11): 1960-1967.
[12] JIANG Ke-jian, ZHU Chang-sheng. Adaptive unbalance compensation control of active magnetic
bearing supporting rotor system
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(3): 503-509.
[13] YANG Xian-yong, ZHOU Xiao-jun, ZHANG Wen-bin, YANG Fu-chun, LIN Yong. Rolling bearing fault feature extraction based on
morphological wavelet and S-transform
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(11): 2088-2092.
[14] YANG Xian-Yong, ZHOU Xiao-Jun, LIN Yong, ZHANG Wen-Bin, CHEN Lu. Fault diagnosis approach for rolling bearing based on V-detector algorithm[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(9): 1805-1810.
[15] YANG Xian-Yong, ZHOU Xiao-Jun, ZHANG Wen-Bin, YANG Fu-Chun. Rolling bearing fault diagnosis based on local wave method
and KPCA-LSSVM
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(8): 1519-1524.