Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (3): 577-587    DOI: 10.3785/j.issn.1008-973X.2025.03.015
    
Local skidding characteristics of cylindrical roller bearing and its influencing factors
Ming LI1(),Jinhua ZHANG1,Wenchao LI2,Hongqi WANG1,Jun HONG1,Bin FANG1,*()
1. Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi’an Jiaotong University, Xi’an 710049, China
2. Luoyang Bearing Research Institute Co. Ltd, Luoyang 471003, China
Download: HTML     PDF(1729KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A complete dynamic model comprehensively considering the interactions among all components was constructed, to investigate the localized skidding characteristics of rollers varying with position, and to clarify the mechanism of localized skidding within the rolling elements. This model aimed to reveal the generation mechanism and action mechanism of bearing skidding, and to explore the influence of two operating parameters, namely radial load and spindle speed, on the skidding characteristics of the bearing. Results showed that the roller skidding inside the bearing presented periodic fluctuation. The influences of the two operating parameters, radial load and spindle speed, on the skidding characteristics of the bearing were explored. The fluctuation range of skidding rate increased with the increase of radial load, and decreased with the increase of bearing speed. Moreover, there was a sudden increase in the slip rate of the roller during the cross-zone movement of the roller into the bearing area. At this moment, the roller and the cage pocket had a violent collision, resulting in a decrease in the local motion stability of the roller. Cylindrical roller bearings operating at medium and low speeds should prioritize using roller skidding rate as their slip evaluation index. For cylindrical roller bearings operating at high speeds, the skidding rate of the cage should be given priority as the evaluation indicator.



Key wordscylindrical roller bearing      dynamic analysis      local skidding characteristics      roller skidding     
Received: 11 January 2024      Published: 10 March 2025
CLC:  TH 133.33  
Fund:  国家自然科学基金资助项目(52205281);中国博士后科学基金资助项目(2021M62551);国机精工开放基金资助项目(JG01KF0202202).
Corresponding Authors: Bin FANG     E-mail: percygod@stu.xjtu.edu.cn;binfang@mail.xjtu.edu.cn
Cite this article:

Ming LI,Jinhua ZHANG,Wenchao LI,Hongqi WANG,Jun HONG,Bin FANG. Local skidding characteristics of cylindrical roller bearing and its influencing factors. Journal of ZheJiang University (Engineering Science), 2025, 59(3): 577-587.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.03.015     OR     https://www.zjujournals.com/eng/Y2025/V59/I3/577


圆柱滚子轴承的局域打滑特性及其影响因素

为了探明滚子随位置变化的局域打滑特性,厘清内部滚动体局域打滑机理,构建综合考虑各部件相互作用的完全动力学模型,以揭示轴承打滑现象的产生机制及作用机理,并探究径向载荷和主轴转速2种工况参数对轴承打滑特性的影响. 研究发现,轴承内部滚子打滑呈现周期性波动,打滑率的波动范围随径向载荷的增大而增大,随轴承转速的增大而减小;滚子在跨区运动过程中(由非承载区进入承载区)存在打滑率突增现象,此时,滚子与保持架兜孔发生剧烈碰撞,造成滚子的局域运动稳定性下降. 对于中低速工况下运行的圆柱滚子轴承,应优先选用滚子打滑率作为打滑评价指标;对于高速工况下运行的圆柱滚子轴承,应优先选用保持架打滑率作为评价指标.


关键词: 圆柱滚子轴承,  动力学分析,  局域打滑特性,  滚子打滑 
Fig.1 Definition of coordinate system for cylindrical roller bearing
Fig.2 Schematic diagram of interaction between roller and ring
Fig.3 Schematic diagram of position relationship between roller and cage
Fig.4 Schematic diagram of interaction between cage and ring
Fig.5 Variation of rotational speed and skidding rate of bearing rollers with time
尺寸参数数值性能参数数值
滚子直径d /mm16轴承宽度B /mm26
滚子长度L /mm17保持架内径dri /mm108.5
滚子数n18保持架外径dro /mm118.5
质量m /kg80轴承节圆直径dm /mm80
轴承内径di /mm80参考转速ni / (r·min?1)5300
轴承外径do /mm140基本额定动载荷C /kN160
轴承宽度B /mm26基本额定静载荷Co /kN166
滚子直径d /mm16极限转速n /( r·min?1)5600
Tab.1 Main parameters of N216 cylindrical roller bearing
Fig.6 Variation of roller skidding rate with phase angle
Fig.7 Relationship of relative sliding speed, contact load, and phase angle between roller and inner or outer ring
Fig.8 Effect of interaction between roller and cage on skidding
Fig.9 Analysis of roller rotational speed
Fig.10 Relationship between roller skidding rate and radial load
Fig.11 Variation of cage skidding rate with radial load
Fig.12 Variation of bearing skidding with direction of radial load
Fig.13 Relationship between roller skidding rate and spindle rotational speed
Fig.14 Relationship between relative skidding speed on roller and inner ring and spindle rotational speed
Fig.15 Variation of cage skidding rate with spindle rotational speed
Fig.16 Variation of contact load between roller and outer ring with rotational speed
[1]   DAWOUD M, BEITLER S, SCHWARZE H Slip characteristics in cylindrical roller bearings. part i: influence of cage type on rolling set slip[J]. Journal of Tribology, 2023, 145 (2): 021203
doi: 10.1115/1.4055555
[2]   DADOUCHE A, KERROUCHE R Bearing skidding detection for high-speed and aero-engine applications[J]. Journal of Engineering for Gas Turbines and Power: ASME, 2022, 144 (3): 031003
[3]   LIU Y Q, CHEN Z G, ZHAI W M, et al Investigation on skidding behavior of a lubricated rolling bearing with fluid–solid-heat coupling effect[J]. Mechanical Systems and Signal Processing, 2024, 206: 110922
doi: 10.1016/j.ymssp.2023.110922
[4]   LIU Y Q, CHEN Z G, LI Y F, et al Dynamic investigation and alleviative measures for the skidding phenomenon of lubricated rolling bearing under light load[J]. Mechanical Systems and Signal Processing, 2023, 184: 109685
doi: 10.1016/j.ymssp.2022.109685
[5]   金前冲, 张庆, 罗军等 滚动轴承打滑试验研究进展[J]. 机床与液压, 2019, 47 (22): 165- 168
JIN Qianchong, ZHANG Qing, LUO Jun, et al Research progress on skidding experimental analysis of rolling bearings[J]. Machine Tool and Hydraulics, 2019, 47 (22): 165- 168
doi: 10.3969/j.issn.1001-3881.2019.22.037
[6]   XU M M, WANG M C, HE D, et al Skidding behavior of lubricated rolling element bearings under the influence of oil film and radial clearances[J]. Tribology International, 2024, 194: 109500
doi: 10.1016/j.triboint.2024.109500
[7]   POPLAWSKI J V Slip and cage forces in a high-speed roller bearing[J]. Journal of Lubrication Technology: Transactions of the ASME, 1972, 94 (2): 143- 150
doi: 10.1115/1.3451660
[8]   HARRIS T A An analytical method to predict skidding in high speed roller bearings[J]. ASLE Transactions, 1966, 9 (3): 229−241
doi: 10.1080/05698196608972139
[9]   HARRIS T A An analytical method to predict skidding in thrust-loaded, angular-contact ball bearings[J]. Journal of Tribology, 1971, 17- 23
[10]   GUO Y, KELLER J Validation of combined analytical methods to predict slip in cylindrical roller bearings[J]. Tribology International, 2020, 148: 106347
[11]   LANIADO-JÁCOME E, MENESES-ALONSO J, DIAZ-LÓPEZV A study of sliding between rollers and races in a roller bearing with a numerical model for mechanical event simulations[J]. Tribology International, 2010, 43 (11): 2175- 2182
doi: 10.1016/j.triboint.2010.06.014
[12]   KIM S J Analytical consideration of the radial clearance to reduce cage slip of the turbo engine roller bearing[J]. Journal of Mechanical Science and Technology, 2021, 35 (7): 2827- 2839
doi: 10.1007/s12206-021-0606-0
[13]   KIM S J Micro-geometry deviation to reduce the cage slip of high-speed cylindrical roller bearings[J]. Journal of Mechanical Science and Technology, 2023, 37 (2): 595- 605
doi: 10.1007/s12206-023-0105-6
[14]   GUPTA P K Dynamics of rolling-element bearings part I: cylindical roller bearing analysis[J]. Journal of Lubrication Technology: Transactions of the ASME, 1979, 101 (3): 293- 302
doi: 10.1115/1.3453357
[15]   GUPTA P K Dynamics of rolling-element bearings part II: cylindical roller bearing results[J]. Journal of Lubrication Technology: Transactions of the ASME, 1979, 101 (3): 305- 311
doi: 10.1115/1.3453360
[16]   WALTERS C T The dynamics of ball bearings[J]. Journal of Lubrication Technology, 1971, 93 (1): 1- 10
doi: 10.1115/1.3451516
[17]   LIU Y Q, CHEN Z G, LI Y F, et al Dynamic investigation and alleviative measures for the skidding phenomenon of lubricated rolling bearing under light load[J]. Mechanical Systems and Signal Processing, 2023, 184: 109685
doi: 10.1016/j.ymssp.2022.109685
[18]   LIU Y Q, CHEN Z G, TANG L, et al Skidding dynamic performance of rolling bearing with cage flexibility under accelerating conditions[J]. Mechanical Systems and Signal Processing, 2021, 150: 107257
doi: 10.1016/j.ymssp.2020.107257
[19]   贾永川, 邓四二 圆柱滚子轴承启动阶段滚动体打滑特性分析[J]. 机械传动, 2015, 39 (12): 133- 137
JIA Yongchuan, DENG Sier Analysis of slippage characteristic of roller in cylindrical roller bearing during the start up[J]. Journal of Mechanical Transmission, 2015, 39 (12): 133- 137
[20]   夏玉磊, 崔永存, 贾晓芳, 等 非稳态工况下弹支SFD圆柱滚子轴承动态特性分析[J]. 机械传动, 2021, 45 (9): 119- 125
XIA Yulei, CUI Yongcun, JIA Xiaofang, et al Dynamic characteristic analysis of elastic support and squeeze film damper cylindrical roller bearing under unsteady condition[J]. Journal of Mechanical Transmission, 2021, 45 (9): 119- 125
[21]   李猛, 李连合, 蒋迪永, 等 高速圆柱滚子轴承停止阶段打滑特性[J]. 河南科技大学学报: 自然科学版, 2015, 36 (6): 14- 19
LI Meng, LI Lianhe, JIANG Diyong, et al Slip characteristics of high-speed cylindrical roller bearing at stop stage[J]. Journal of Henan University of Science and Technology: Natural Science, 2015, 36 (6): 14- 19
[22]   韩勤锴, 李兴林, 闫国斌, 等 变载偏斜圆柱滚子轴承打滑动力学分析[J]. 机械工程学报, 2017, 53 (9): 58- 65
HAN Qinkai, LI Xinglin, YAN Guobin, et al Dynamic skidding behavior of skew cylindrical roller bearings under time-variable loads[J]. Journal of Mechanical Engineering, 2017, 53 (9): 58- 65
doi: 10.3901/JME.2017.09.058
[23]   TU W B, LUO Y, YU W N, et al Investigation of the dynamic local skidding behaviour of rollers in cylindrical roller bearings[J]. Proceedings of the Institution of Mechanical Engineers Part K-Journal of Multi-Body Dynamics, 2019, 233 (4): 899- 909
doi: 10.1177/1464419319861616
[24]   XU X Q, LI W M, HE Z Y, et al Adaptive time-domain sliding average method for spall size estimation of roller bearing with skidding[J]. Journal of Sound and Vibration, 2023, 567: 117937
doi: 10.1016/j.jsv.2023.117937
[25]   LUNDBERG G Elastische Berührung zweier Halbräume[J]. Forschung Auf Dem Gebiet Des Ingenieurwesens A, 1939, 10 (5): 201- 211
[26]   王自彬, 邓四二, 张文虎, 等 高速圆柱滚子轴承保持架运行稳定性分析[J]. 振动与冲击, 2019, 38 (9): 100- 108
WANG Zibin, DENG Sier, ZHANG Wenhu, et al Operational stability analysis for cage of high-speed cylindrical roller bearings[J]. Journal of Vibration and Shock, 2019, 38 (9): 100- 108
[27]   张文虎, 胡余生, 邓四二, 等 高速圆柱滚子轴承保持架振动特性分析[J]. 振动与冲击, 2019, 38 (22): 85- 93
ZHANG Wenhu, HU Yusheng, DENG Sier, et al Cage vibration behaviors of high - speed cylindrical roller bearings[J]. Journal of Vibration and Shock, 2019, 38 (22): 85- 93
[28]   王燕霜. 航空润滑油流变特性及其对润滑性能影响的研究[D]. 哈尔滨: 哈尔滨工业大学, 2006.
WANG Yanshuang. Study of rheological behavior of aviation lubricating oil and its effect on lubrication performance [D]. Harbin: Harbin Instiute of Technology, 2006.
[29]   SCHLICHTING H, GERSTEN K. Boundary-layer theory [M]. [s.l.]: springer, 1979.
[30]   RUMBARGER J H, FILETTI E G, GUBERNICK D Gas turbine engine mainshaft roller bearing-system analysis[J]. Journal of Lubrication Technology, 1973, 95 (4): 401- 416
[31]   SHAO Y M, TU W B, CHEN Z G, et al Investigation on skidding of rolling element bearing in loaded zone[J]. Journal of Harbin Institute of Technology, 2013, 20 (1): 34- 41
[32]   涂文兵, 何海斌, 罗丫, 等 滚动轴承稳定工况下的滚动体打滑动力学分析[J]. 振动与冲击, 2019, 38 (6): 94- 99
TU Wenbing, HE Haibin, LUO Ya, et al Dynamic skidding behavior of rolling elements under bearing steady working conditions[J]. Journal of Vibration and Shock, 2019, 38 (6): 94- 99
[33]   张家铭, 邱明, 庞晓旭, 等 高速轻载圆柱滚子轴承打滑特性试验与分析[J]. 航空动力学报, 2023, 38 (12): 2991- 2999
ZHANG Jiaming, QIU Ming, PANG Xiaoxu, et al Test and analysis of skidding characteristics of high-speed and light-load cylindrical roller bearings[J]. Journal of Aerospace Power, 2023, 38 (12): 2991- 2999
[1] Guijun WAN,Jianan LI,Dongming FENG. Bridge influence line identification based on variational mode decomposition and piecewise polynomial truncated singular value decomposition[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(3): 460-468.
[2] Jianping LIN,Kun CHEN,Jianchao PAN,Guannan WANG,Qian FENG. New composite finite element for static, dynamic and buckling analysis of sandwich composite beams[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(3): 518-528.
[3] Xiaojie LIN,Jiahao XU,Peng SUN,Wei ZHONG,Yacai HU. Thermodynamic cycle design of steam Carnot battery based on phase change material[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(1): 161-168.
[4] Jian-bin ZHAO,Yi-bo XI,Zhen-yu WANG. Fatigue damage calculation method of monopile supported offshore wind turbine[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1711-1719.
[5] Shuo CONG,Jia-ming CHEN,Jing-cheng CAI,Rui-song SUN,Jian-hua DONG,Fei GUO. Thermodynamic analysis and experimental study on humidification-dehumidification desalination system[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 684-691.
[6] TONG Gen-shu, YE Yun, ZHANG Lei. Comparative study on elastic-plastic response spectra of three idealized hysteretic models[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(4): 693-703.
[7] SHU E-Xin, ZHANG Bin, DIAO Jun, DENG. Movement analysis of rice seed embryo ordering in vibration seed-metering device[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(5): 902-906.