|
|
New composite finite element for static, dynamic and buckling analysis of sandwich composite beams |
Jianping LIN1,2( ),Kun CHEN1,Jianchao PAN3,4,Guannan WANG3,4,Qian FENG3,*( ) |
1. College of Civil Engineering, Huaqiao University, Xiamen 361021, China 2. Key Laboratory for Intelligent Infrastructure and Monitoring of Fujian Province, Huaqiao University, Xiamen 361021, China 3. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China 4. Zhejiang Provincial Engineering Research Center for Digital and Smart Maintenance of Highway, Hangzhou 310058, China |
|
|
Abstract A new composite finite element of a three-layer partial-interaction sandwich composite beam with interlayer interfacial slip was derived for static, dynamic and buckling analysis. The partial-interaction effects of the sandwich beam were considered by deriving the energy principle based on the Timoshenko beam theory. Then a high-order interpolation function with internal degrees of freedom was used for determining the nodal displacement, section rotary angle and interfacial slips of the sandwich beam, which could solve the frequent "slip locking" phenomenon in numerical analysis. The explicit stiffness matrix, mass matrix and geometric stiffness matrix of the sandwich beam were obtained through variational principle. The accuracy of the proposed composite finite element for the corresponding sandwich structure was verified through the numerical program which was developed based on the MATLAB software. The static, dynamic and buckling analysis of the three-layer sandwich beam with different cross-sections were then carried out, under the circumstances of various loads and different boundary conditions. The variation laws of the calculation results and their errors of sandwich composite beams with different span-depth ratios and different interfacial shear stiffnesses were also analyzed. The proposed composite finite element with explicit expressions has high calculation efficiency and is easy to be applied into other finite element programs or commercial software subroutines.
|
Received: 08 February 2023
Published: 05 March 2024
|
|
Fund: 国家自然科学基金资助项目(52378158, 12322206, 12002303);浙江省‘尖兵’‘领雁’研发攻关计划资助项目(2022C01143);福建省自然科学基金资助项目(2023J01106);浙江大学-浙江交工协同创新联合研究中心资助项目(ZDJG2021002);厦门市自然科学基金资助项目(3502Z20227200). |
Corresponding Authors:
Qian FENG
E-mail: linjianping@hqu.edu.cn;fengqian@zju.edu.cn
|
用于夹层梁静动力及屈曲分析的新型组合结构单元
推导出新型组合结构单元,用于考虑界面滑移的3层部分作用夹层组合梁的静动力及屈曲特性分析. 基于铁木辛柯梁理论,建立考虑夹层梁部分作用效应的能量原理. 针对其受力特性,在节点位移、横截面转角和界面滑移插值时均采用含内部自由度的高阶插值函数,以解决含界面有限元数值分析中常遇到的“滑移锁定”现象. 通过变分原理得到夹层梁的刚度矩阵、质量矩阵以及几何刚度矩阵的显示表达式. 基于MATLAB编译相应夹层结构的有限元程序并验证其准确性. 对不同截面3层夹层组合梁进行不同荷载条件和边界条件下的静动力及屈曲特性分析,并探讨不同夹层组合梁跨高比和不同界面抗剪连接刚度下的计算结果及其误差的变化规律. 所推导的显示表达式新型组合结构单元计算效率高,并便于推广应用于其他有限元程序或商业软件子程序中.
关键词:
夹层组合梁,
部分作用,
静动力分析,
刚度矩阵,
质量矩阵,
铁木辛柯梁理论
|
|
[1] |
ELLOBODY E, YOUNG B Performance of shear connection in composite beams with profiled steel sheeting[J]. Journal of Constructional Steel Research, 2006, 62 (7): 682- 694
doi: 10.1016/j.jcsr.2005.11.004
|
|
|
[2] |
LIEW J Y R, YAN J, HUANG Z Steel-concrete-steel sandwich composite structures-recent innovations[J]. Journal of Constructional Steel Research, 2017, 130: 202- 221
doi: 10.1016/j.jcsr.2016.12.007
|
|
|
[3] |
严加宝, 张令心, 林旭川, 等 双钢板-混凝土组合防护结构受力机理研究综述[J]. 自然灾害学报, 2020, 29 (6): 1- 12 YAN Jiabao, ZHANG Lingxin, LIN Xuchuan, et al Review on mechanisms of double skin composite protective structures[J]. Journal of Natural Disasters, 2020, 29 (6): 1- 12
|
|
|
[4] |
CORTES F, SARRIA I, YIGIT A S. Dynamic analysis of three-layer sandwich beams with thick viscoelastic damping core for finite element applications [EB/OL]. [2023−01−01]. https://downloads.hindawi.com/journals/sv/2015/736256.pdf.
|
|
|
[5] |
胡霖远, 陈伟球, 张治成, 等 基于Zig-zag理论的波形钢腹板梁自由振动分析[J]. 浙江大学学报:工学版, 2019, 53 (3): 503- 511 HU Linyuan, CHEN Weiqiu, ZHANG Zhicheng, et al Free vibration analysis of concrete beams with corrugated steel webs based on Zig-zag theory[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (3): 503- 511
|
|
|
[6] |
黄小坤, 段树坤, 刘强, 等 结构胶侧扭约束玻璃柱轴压承载力设计方法研究[J]. 工程力学, 2021, 38 (3): 122- 131 HUANG Xiaokun, DUAN Shukun, LIU Qiang, et al A study on the design method for axial compressive resistance of glass columns laterally and torsionally constrained by structural adhesive[J]. Engineering Mechanics, 2021, 38 (3): 122- 131
doi: 10.6052/j.issn.1000-4750.2020.04.0280
|
|
|
[7] |
NEWMARK N Tests and analysis of composite beams with incomplete interaction[J]. Proceedings of the Society for Experimental Stress Analysis, 1951, 9 (1): 75- 92
|
|
|
[8] |
CHUI Y H, BARCLAY D W Analysis of three-layer beams with non-identical layers and semi-rigid connections[J]. Canadian Journal of Civil Engineering, 1998, 25 (2): 271- 276
doi: 10.1139/l97-093
|
|
|
[9] |
SOUSA JR B M, DA SILVA A R Analytical and numerical analysis of multilayered beams with interlayer slip[J]. Engineering Structures, 2010, 32 (6): 1671- 1680
doi: 10.1016/j.engstruct.2010.02.015
|
|
|
[10] |
SOUSA JR J B M Exact finite elements for multilayered composite beam-columns with partial interaction[J]. Computers and Structures, 2013, 123: 48- 57
doi: 10.1016/j.compstruc.2013.04.008
|
|
|
[11] |
KEO P, NGUYEN Q, SOMJA H, et al Derivation of the exact stiffness matrix of shear-deformable multi-layered beam element in partial interaction[J]. Finite Elements in Analysis and Design, 2016, 112: 40- 49
doi: 10.1016/j.finel.2015.12.004
|
|
|
[12] |
LIN J, LIU X, WANG Y, et al Static and dynamic analysis of three-layered partial-interaction composite structures[J]. Engineering Structures, 2022, 252: 113581
doi: 10.1016/j.engstruct.2021.113581
|
|
|
[13] |
LIN J, CHEN K, ZHANG L, et al Composite finite elements on dynamic and buckling responses of composite beams with independent rotations[J]. Structures, 2022, 45: 707- 720
|
|
|
[14] |
RANZI G Locking problems in the partial interaction analysis of multi-layered composite beams[J]. Engineering Structures, 2008, 30 (10): 2900- 2911
doi: 10.1016/j.engstruct.2008.04.006
|
|
|
[15] |
XU R, WANG G Variational principle of partial-interaction composite beams using timoshenko's beam theory[J]. International Journal of Mechanical Sciences, 2012, 60 (1): 72- 83
doi: 10.1016/j.ijmecsci.2012.04.012
|
|
|
[16] |
XU R, WU Y Static, dynamic, and buckling analysis of partial interaction composite members using timoshenko's beam theory[J]. International Journal of Mechanical Sciences, 2007, 49 (10): 1139- 1155
|
|
|
[17] |
XU R, WANG G Bending solutions of the timoshenko partial-interaction composite beams using euler-bernoulli solutions[J]. Journal of Engineering Mechanics, 2013, 139 (12): 1881- 1885
doi: 10.1061/(ASCE)EM.1943-7889.0000614
|
|
|
[18] |
胡海昌. 弹性力学的变分原理及其应用[M]. 北京: 科学出版社, 1981.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|