Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (3): 510-517    DOI: 10.3785/j.issn.1008-973X.2024.03.008
    
Optimization of section layout of steel plate composite beam with medium span
Lifeng LI1(),Kun HOU1,Deqiang ZOU2,Hao PENG1,Lingxiao LI2
1. College of Civil Engineering, Hunan University, Changsha 410082, China
2. China Construction Fifth Engineering Bureau Co. Ltd, Changsha 410004, China
Download: HTML     PDF(1368KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A 30 m span simply supported steel plate composite girder bridge with continuous deck was taken as the research object, in order to realize the standardized design of steel plate composite girder and achieve the purpose of further popularization and application. The current design code of steel plate composite girder bridge in China was combined, the cost of bridge and the steel consumption were taken as the objective function, the dimension layout parameters and the number of main beam were taken as the design variables, and the stress, deformation, local stability as well as standard construction requirements were taken as the constraint conditions. The optimization model of the section parameters of the composite steel plate girder was established based on the above conditions, and the genetic algorithm was used for optimization analysis. The optimization results showed that the proposed algorithm was stable, reliable and efficient, and there was a large space for optimization, depending on the structure section layout of the project. Under the condition of keeping the width of the bridge and the layout of the driveway unchanged, the cost of using the six-beam section was the least, which was reduced by about 13% compared with that of the original design. The steel consumption with four-beam section was the least, 123.69 kg/m2, and about 27% of the steel consumption was saved compared with the original design. The optimization results can provide reference for the section design of medium span steel plate composite bridge. Economic analysis showed that, the economic values of the span height ratio of the section were 20?23, 18?21, 14?17, respectively, when the main beam spacing was about 2.3 m, 3.2 m and 4.8 m.



Key wordsmunicipal bridge      cross section optimization      economic optimization      steel plate composite girder      genetic algorithm     
Received: 13 March 2023      Published: 05 March 2024
CLC:  U 443.35  
Fund:  国家自然科学基金资助项目(51978257,52278176);中建五局科技研发计划资助项目(cscec5b-2020-17);云交科教[2017]17号资助项目.
Cite this article:

Lifeng LI,Kun HOU,Deqiang ZOU,Hao PENG,Lingxiao LI. Optimization of section layout of steel plate composite beam with medium span. Journal of ZheJiang University (Engineering Science), 2024, 58(3): 510-517.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.03.008     OR     https://www.zjujournals.com/eng/Y2024/V58/I3/510


中等跨径钢板组合梁截面布置优化

为了实现钢板组合梁的标准化设计,达到进一步推广应用的目的,以跨径30 m的先简支后桥面连续钢板组合梁桥为研究对象,结合目前中国钢-混组合梁桥的设计规范,以全桥造价及全桥钢材用量为目标函数,以钢板组合梁截面尺寸布置参数和主梁数量为设计变量,并以应力、变形、局部稳定和规范构造要求为约束条件,建立钢板组合梁截面参数的优化模型,并采用遗传算法展开优化分析. 优化结果表明:所提算法稳定可靠、效率高,依托工程的结构截面布置有较大的优化空间. 当桥宽和车道布置不变时,采用6梁式截面的全桥造价最少,相对原始设计截面可节省约13%的费用;采用4梁式截面的全桥钢材用量最少,为128.65 kg/m2,相对原始设计截面可节省约27%的钢材用量. 优化结果可为中等跨径钢板组合梁桥的截面设计提供参考. 通过经济性分析发现,当主梁间距分别取约2.3、3.2、4.8 m时,跨高比的经济取值分别为20~23、18~21、14~17.


关键词: 城市桥梁,  截面优化,  经济性优化,  钢板组合梁,  遗传算法 
Fig.1 General layout of initial design of steel-concrete composite beam
计算方法σsmax/MPaσcmax/MPaτmax/MPay/mm
简化计算公式249.517.943.935.8
有限元模型244.916.745.529.3
Tab.1 Comparison of results of simplified formulas and finite element calculations for most unfavorable state of dependent project
变量含义取值范围/mm初值/mm
h钢梁高度[500, 2 000]1 500
d主梁间距[(B/(N+0.2), B/(N?0.2)]
b1钢梁上翼缘宽度[360, 800]400
t1跨中截面钢梁上翼缘厚度[16, 40]20
tw1跨中截面钢梁腹板厚度[12, 40]20
b2钢梁下翼缘宽度[450, 1 500]600
t2跨中截面钢梁下翼缘厚度[22, 40]22
t3支点截面钢梁上翼缘厚度[16, 40]20
tw2支点截面钢梁腹板厚度[12, 40]20
t4支点截面钢梁下翼缘厚度[22, 40]22
Tab.2 Design variables for optimized cross section
cs/(元?t?1cc/(元?m?3c1s/(元?t?1c1c/(元?m?3
14 4621 200260566
c2/(元?m?2c3/(元?t?1C4/万元
568 26913.30
Tab.3 Prices of components in cost calculation
Fig.2 Optimization iterative process with cost as optimization objective
设计N$ {t_{\text{c}}} $/mmd/mmC/万元Δ/%
初始设计82602 400238.71
最优设计43214 550211.6611.3
62533 180207.6913.0
82212 370212.4611.0
Tab.4 Optimization results with cost as optimization objective
Fig.3 Layout of cross section of optimization result with cost as optimization objective (N=6)
Fig.4 Optimization iterative process with steel consumption as optimization objective
设计N$ {t_{\text{c}}} $/mmd/mmMs/(kg?m?2)Δ/%
初始设计82602 400176.11
最优设计42814 860128.6527.0
62353 180142.7419.0
82112 370158.1310.2
Tab.5 Optimization results with steel consumption as optimization objective
Fig.5 Layout of cross section of optimization result with steel consumption as optimization objective (N=4)
Fig.6 Midas finite element model of six-girder steel plate composite girder bridge
目标函数计算方式σsmax/MPaσcmax/MPaτmax/MPay/mm
CN=6)简化计算公式245.116.268.532.8
有限元模型242.216.265.729.8
MsN=4)简化计算公式245.413.766.523.4
有限元模型236.613.764.921.3
规范限值245.420.4160.050.0
Tab.6 Comparison of simplified formulas and finite element calculations of most unfavorable state of optimization results
Fig.7 Relationship between steel consumption and span
Fig.8 Relationship between span-height ratio of section and span
Fig.9 Cost components of optimization results with cost as optimization objective
[1]   张凯. 中小跨径钢板组合梁桥快速建造技术与应用研究[D]. 西安: 长安大学, 2016.
ZHANG Kai. Research on the accelerated construction technology and the application of composite steel plate girder bridge with medium-small span [D]. Xi'an: Chang'an University, 2016.
[2]   刘永健, 高诣民, 周绪红, 等 中小跨径钢-混凝土组合梁桥技术经济性分析[J]. 中国公路学报, 2017, 30 (3): 1- 13
LIU Yongjian, GAO Yimin, ZHOU Xuhong, et al Technical and economic analysis in steel-concrete composite girder bridges with small and medium span[J]. China Journal of Highway and Transport, 2017, 30 (3): 1- 13
doi: 10.3969/j.issn.1001-7372.2017.03.001
[3]   邬沛, 李玉顺, 许达, 等 基于遗传算法的钢-竹组合工字形梁截面优化设计[J]. 建筑结构学报, 2020, 41 (1): 149- 155
WU Pei, LI Yushun, XU Da, et al Multi-objective optimal section design of I-shaped section steel-bamboo composite beam using genetic algorithm[J]. Journal of Building Structure, 2020, 41 (1): 149- 155
[4]   李立峰, 邵旭东 计入局部刚度和稳定约束的钢桥面板优化设计[J]. 湖南大学学报:自然科学版, 2009, 36 (1): 14- 18
LI Lifeng, SHAO Xudong Optimal design of orthotropic steel deck stiffened plate[J]. Journal of Hunan University: Natural Science Edition, 2009, 36 (1): 14- 18
[5]   朱劲松, 秦亚婷, 刘周强 预应力UHPC-NC组合梁截面优化设计[J]. 吉林大学学报:工学版, 2023, 53 (11): 3151- 3159
ZHU Jingsong, QIN Yating, LIU Zhouqiang Section optimization design of prestressed uhpc-nc composite beams[J]. Journal of Jilin University: Engineering and Technology Edition, 2023, 53 (11): 3151- 3159
[6]   刘齐茂, 李微, 李暾, 等 钢-混凝土组合梁的截面优化设计[J]. 兰州理工大学学报, 2006, (3): 115- 118
LIU Qimao, LI Wei, LI Tun, et al Optimization design of cross section of steel concrete composite beams[J]. Journal of Lanzhou University of Technology, 2006, (3): 115- 118
doi: 10.3969/j.issn.1673-5196.2006.03.033
[7]   MELA K, HEINISUO M Weight and cost optimization of welded high strength steel beams[J]. Engineering Structures, 2014, 79: 354- 364
doi: 10.1016/j.engstruct.2014.08.028
[8]   SKOGLUND O, LEANDER J, KAROUMI R Optimizing the steel girders in a high strength steel composite bridge[J]. Engineering Structures, 2020, 221: 110981
doi: 10.1016/j.engstruct.2020.110981
[9]   中华人民共和国住房和城乡建设部. 钢-混凝土组合桥梁设计规范[S]. 北京: 中国计划出版社, 2013.
[10]   日本道路协会. 道路桥示方书同解说: 钢桥篇[M]. 东京: 丸善株式会社, 2001.
[11]   SENOUCI A, AIANSARI M Cost optimization of composite beams using genetic algorithms[J]. Advances in Engineering Software, 2009, 40: 1112- 1118
doi: 10.1016/j.advengsoft.2009.06.001
[12]   中华人民共和国交通运输部. 公路钢结构桥梁设计规范[S]. 北京: 人民交通出版社, 2015.
[13]   刘明慧. 钢板-混凝土组合梁桥截面优化研究[D]. 西安: 西安科技大学, 2019.
LIU Minghui. Research on section optimization of steel plate-concrete composite girder bridge [D]. Xi’an: Xi’an University of Science and Technology, 2019.
[14]   王小平, 曹立明. 遗传算法: 理论、应用与软件实现[M]. 西安: 西安交通大学出版社, 2002.
[15]   STORN R, PRICE K Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11 (4): 341- 359
doi: 10.1023/A:1008202821328
[1] Peng LIU,Qingchang LU,Han QIN,Xin CUI. Road network multi-stage disaster resistance optimization model and its application[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(1): 96-108.
[2] Huang LI,Hong-juan GE,Ying MA,Yong-shuai WANG. Parameters optimization design of dual-input dual-buck inverter system based on hyperplane NSGA-II[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 606-615.
[3] Li-li XU,Yan ZHAN,Jian-sha LU,Yi-ding LANG. Compound operation scheduling optimization in four-way shuttle warehouse system[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(11): 2188-2199.
[4] Hao ZHA,Shao-hua FEI,Yun FU,Zhen LV,Wei-dong ZHU. Online decoupling technology of six-dimensional force sensor based on EtherCAT bus[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(10): 2042-2050.
[5] Yong-sheng ZHAO,Rui-xiang LI,Na-na NIU,Zhi-yong ZHAO. Shape control method of fuselage driven by digital twin[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1457-1463.
[6] Bao-feng SUN,Xin-kang ZHANG,Gen-dao LI,Jiao-jiao LIU. Joint decision-making of balancing and sequencing for type-II robotic mixed-model assembly line[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1097-1106.
[7] Xin-ying ZHANG,Lu CHEN,Wen-hui YANG. A parallel-machine scheduling problem with time-changing effect and preventive maintenance[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(2): 408-418.
[8] Hong-hao HU,Xiu-juan LI,Jun-feng YU,Qing-zhou ZHANG,Jing-qing LIU. Quantitative identification of inflow and infiltration of sanitary sewer system based on coupling simulation[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2313-2320.
[9] Yi-quan ZOU,Hao-zhou HUANG,Xu-yong XIA,Xin WANG. Design optimization of curved curtain wall based on genetic algorithm under cost orientation[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 2049-2056.
[10] Sheng-tao XIANG,Da WANG. Model interactive modification method based on improved quantum genetic algorithm[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 100-110.
[11] Fei JU,Wei-chao ZHUANG,Liang-mo WANG,Jing-xing LIU,Qun WANG. Velocity planning strategy for economic cruise of hybrid electric vehicles[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1538-1547.
[12] Tie ZHANG,Liang-liang HU,Yan-biao ZOU. Identification of improved friction model for robot based on hybrid genetic algorithm[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 801-809.
[13] Lin-lin JI,Qing-wei WANG,Hao ZHOU,Mei-mei ZHENG. Optimization of cold chain fruit path considering customer satisfaction[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 307-317.
[14] Ping QI,Hong SHU. Task offloading strategy considering terminal mobility in medical wisdom scenario[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1126-1137.
[15] Xiang-fei MENG,Ren-guang WANG,Yuan-li XU. Torque distribution strategy of pure electric driving mode for dual planetary vehicle[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2214-2223.