Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (5): 1060-1071    DOI: 10.3785/j.issn.1008-973X.2024.05.019
    
Splash lubrication characteristics and structure improvement of spiral bevel gearbox for electrical multiple unit
Shuai SHAO1(),Kailin ZHANG1,*(),Yuan YAO1,Yi LIU1,Zhengyang WANG2
1. State Key Laboratory of Rail Transit Vehicle System, Southwest Jiaotong University, Chengdu 610000, China
2. Simulation Department, Suzhou ShonCloud Engineering Software Limited Company, Suzhou 215000, China
Download: HTML     PDF(4124KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A high-precision flow field simulation model was established by using the moving particle semi-implicit (MPS) method in order to analyze the lubrication mechanism of electrical multiple unit gearbox, taking a certain type of spiral bevel gear transmission gearbox as the research object. The film flow model was introduced to improve the non-slip wall boundary conditions so that the MPS has the function of predicting the flow characteristics of the liquid film. The effects of input gear rotating speed and initial lubricating oil volume on the lubricating oil coverage rate, oil film distribution characteristics and power loss of the inner wall of the gearbox and the gear surface were analyzed. Results show that the lubricating oil coverage and liquid film thickness on the inner wall of the gearbox are mainly affected by the splash effect of lubricating oil, and the gear surface is affected by the splash effect of lubricating oil and its own motion. The power loss analysis indicates that the power loss is positively correlated with the input gear rotating speed and the initial lubricating oil volume, and is more sensitive to high rotating speed. The box structure is improved, the box boss is eliminated and the distance from the output gear is expanded, which can significantly improve the lubrication conditions of the gearbox.



Key wordsgearbox      splash lubrication      thin film flow      oil film thickness      power loss     
Received: 24 April 2023      Published: 26 April 2024
CLC:  TP 393  
Fund:  国家自然科学基金资助项目(U2268211);四川省自然科学基金资助项目(2022NSFSC0034,2022NSFSC0034);大功率交流传动电力机车系统集成国家重点实验室开放课题(R111720H01385).
Corresponding Authors: Kailin ZHANG     E-mail: swjtushaoshuai@163.com;zhangkailin@swjtu.cn
Cite this article:

Shuai SHAO,Kailin ZHANG,Yuan YAO,Yi LIU,Zhengyang WANG. Splash lubrication characteristics and structure improvement of spiral bevel gearbox for electrical multiple unit. Journal of ZheJiang University (Engineering Science), 2024, 58(5): 1060-1071.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.05.019     OR     https://www.zjujournals.com/eng/Y2024/V58/I5/1060


动车组锥齿轮箱飞溅润滑特性及箱体结构改进

为了分析动车组齿轮箱的润滑机理,以某型螺旋锥齿轮传动齿轮箱为研究对象,运用移动粒子半隐式(MPS)法建立高精度的流场仿真模型. 引入薄膜流动模型,对无滑移壁面边界条件进行改进,使移动粒子半隐式法具有预测液膜流动特性的功能. 研究输入齿轮转速、初始润滑油量对箱体内壁和齿轮表面的润滑油覆盖率、油膜分布特性及功率损失的影响. 结果表明,箱体内壁面的润滑油覆盖率和液膜厚度主要受润滑油飞溅效应的影响,齿轮表面受到润滑油飞溅效应和自身运动的共同影响. 功率损失分析显示,功率损失与输入齿轮转速和初始润滑油油量均呈正相关关系,对高转速更敏感. 对箱体结构进行改进,消除箱体凸台,扩大与输出齿轮的距离,该措施可以显著改善齿轮箱的润滑条件.


关键词: 齿轮箱,  飞溅润滑,  薄膜流动,  油膜厚度,  功率损失 
Fig.1 Kernel function action model
Fig.2 Schematic diagram of thin film flow model
Fig.3 Schematic diagram of free liquid level discrimination
Fig.4 Schematic diagram of boundary particle arrangement
Fig.5 Exploded view of gearbox components
名称输入齿轮输出齿轮
齿面类型格里森式格里森式
齿数2255
模数/mm9.29.2
齿宽/mm8282
压力角/(°)2020
螺旋角/(°)3030
Tab.1 Bevel gear parameters of EMU gearbox
参数数值
ρ15/(kg·m?3867
ν40/(mm2·s?1116
ν100/(mm2·s?116.6
Tab.2 Physical parameters of lubricating oil 75W-90
θ/℃ρ/ (kg·m?3)ν/ (mm2·s?1)
40852116
6084050.2
8082825.9
10081616.6
Tab.3 Property of lubricating oil at different temperature
工况序号nd/(r·min?1)V0/L箱体结构改进
160015改进前
21 20015
31 80015
42 40015
53 00015
61 20012
71 20018
81 20021
91 20024
1060015改进后
113 00015
Tab.4 Simulation calculation table of flow field in gearbox
参数数值
Z1/Z224/24
m/mm6.5
B/mm40
β/(°)35
α/(°)20
Σ/(°)90
Tab.5 Parameters of experiment gearbox gear pair
Fig.6 Comparison of oil distribution in spiral bevel gearbox
Fig.7 Comparison of oil mixing power loss in spiral bevel gearbox
Fig.8 Instantaneous oil distribution in gearbox
Fig.9 Instantaneous oil coverage rate of gearbox
Fig.10 Instantaneous oil film distribution in gearbox
Fig.11 Particle number density distribution at different rotating speed
Fig.12 Distribution of oil film on inner wall of box at different rotating speed
Fig.13 Distribution of oil film on surface of gear at different rotating speed
工况nd/(r·min?1)Td/(N·m)ns/(r·min?1)Ts/(N·m)Ploss/W
16000.0562400.88925.86
21 2000.1934801.22986.07
31 8000.3477201.556182.64
42 4000.40496011.5661 264.25
53 0000.8111 20047.7826 258.77
Tab.6 Churning torque and power loss at different rotating speed
Fig.14 Power loss of gearbox at different rotating speed
Fig.15 Particle number density distribution with different initial oil volumes
Fig.16 Distribution of oil film on inner wall of box with different initial oil volumes
Fig.17 Distribution of oil film on surface of gear with different initial oil volumes
工况nd/(r·min?1)Td/(N·m)ns/(r·min?1)Ts/(N·m)Ploss/W
61 2000.0584800.64239.57
21 2000.1934801.22986.07
71 2000.3234801.761129.10
81 2000.4534802.499182.48
91 2000.6724803.434257.08
Tab.7 Churning torque and power loss with different initial oil volumes
Fig.18 Power loss of gearbox with different initial oil volume
Fig.19 Flow field characteristics before box structure improvement at low rotating speed
Fig.20 Flow field characteristics after box structure improvement at low rotating speed
Fig.21 Flow field characteristics before box structure improvement at high rotating speed
Fig.22 Flow field characteristics after box structure improvement at high rotating speed
工况nd/(r·min?1)Td/(N·m)ns/(r·min?1)Ts/(N·m)Ploss/W
16000.0562400.88925.86
106000.0472400.65219.33
53 0000.8111 20047.7826 258.77
113 0000.7561 20041.6975 476.91
Tab.8 Churning torque and power loss before and after improvement of gearbox
[1]   LIU H, JURKSCHAT T, LOHNER T, et al Determination of oil distribution and churning power loss of gearboxes by finite volume CFD method[J]. Tribology International, 2017, 109: 346- 354
doi: 10.1016/j.triboint.2016.12.042
[2]   LIU H, JURKSCHAT T, LOHNER T, et al Detailed investigations on the oil flow in dip-lubricated gearboxes by the finite volume CFD method[J]. Lubricants, 2016, 6 (2): 47
[3]   MASTRONE M N, HARTONO E A, CHERNORAY V, et al Oil distribution and churning losses of gearboxes: Experimental and numerical analysis[J]. Tribology International, 2020, 151: 106496
doi: 10.1016/j.triboint.2020.106496
[4]   LIU H, ARFAOUI G, STANIC M, et al Numerical modelling of oil distribution and churning gear power losses of gearboxes by smoothed particle hydrodynamics[J]. Proceedings of the Institution of Mechanical Engineers, Part J. Journal of Engineering Tribology, 2019, 233 (4): 74- 86
[5]   GROENENBOOM P H L, METTICHI M Z, GARGOURI Y. Simulating oil flow for gearbox lubrication using smoothed particle hydrodynamics [C]// Proceedings of the International Conference on Gears . Garching: [s. n. ], 2015: 377-386.
[6]   刘桓龙, 谢迟新, 李大法, 等 齿轮箱飞溅润滑流场分布和搅油力矩损失[J]. 浙江大学学报:工学版, 2020, 55 (5): 876- 886
LIU Huanlong, XIE Chixin, LI Dafa, et al Flow field distribution of splash lubrication of gearbox and churning gear torque loss[J]. Journal of Zhejiang University: Engineering Science, 2020, 55 (5): 876- 886
[7]   DUO D, CHEN F, LIU J, et al Numerical modeling of churning power loss of gear system based on moving particle method[J]. Tribology Transactions, 2020, 63 (1): 182- 193
doi: 10.1080/10402004.2019.1682212
[8]   DENG X, WANG S, HAMMI Y, et al A combined experimental and computational study of lubrication mechanism of high precision reducer adopting a worm gear drive with complicated space surface contact[J]. Tribology International, 2020, 146: 106261
doi: 10.1016/j.triboint.2020.106261
[9]   DENG X, WANG S, WANG S, et al Lubrication mechanism in gearbox of high-speed railway trains[J]. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2020, 14 (4): JAMDSM0054
doi: 10.1299/jamdsm.2020jamdsm0054
[10]   谢迟新, 刘桓龙, 贾瑞河, 等 基于MPS方法的二级齿轮箱飞溅润滑特性研究[J]. 中国机械工程, 2021, 32 (15): 1827- 1835
XIE Chixin, LIU Huanlong, JIA Ruihe, et al Research on splash lubrication characteristics of two-stage gearbox based on MPS method[J]. China Mechanical Engineering, 2021, 32 (15): 1827- 1835
doi: 10.3969/j.issn.1004-132X.2021.15.008
[11]   冯成程, 董庆兵, 魏静, 等 高速动车组齿轮箱内部流场仿真分析及搅油损失计算[J]. 润滑与密封, 2022, 47 (1): 101- 110
FENG Chengcheng, DONG Qingbing, WEI Jing, et al Simulation and analysis of internal flow field in gearbox of high-speed emus and calculation of churning power loss[J]. Lubrication Engineering, 2022, 47 (1): 101- 110
doi: 10.3969/j.issn.0254-0150.2022.01.015
[12]   PENG Q, GUI L, FAN Z Numerical and experimental investigation of splashing oil flow in a hypoid gearbox[J]. Engineering Applications of Computational Fluid Mechanics, 2018, 12 (1): 324- 333
doi: 10.1080/19942060.2018.1432506
[13]   HU X, JIANG Y, LUO C, et al Churning power losses of a gearbox with spiral bevel geared transmission[J]. Tribology International, 2019, 129: 398- 406
doi: 10.1016/j.triboint.2018.08.041
[14]   JIANG Y, HU X, HONG S, et al Influences of an oil guide device on splash lubrication performance in a spiral bevel gearbox[J]. Tribology International, 2019, 136: 155- 164
doi: 10.1016/j.triboint.2019.03.048
[15]   LU F, WANG M, PAN W, et al CFD-based investigation of lubrication and temperature characteristics of an intermediate gearbox with splash lubrication[J]. Applied Sciences, 2021, 11 (1): 352
[16]   张天纲. 移动粒子半隐式方法理论及应用[M]. 哈尔滨: 哈尔滨工业大学出版社, 2019: 4-5.
[17]   张凯, 孙中国, 席光 移动粒子半隐式法核函数特征对压力求解稳定性的影响[J]. 西安交通大学学报, 2019, 53 (9): 1- 6
ZHANG Kai, SUN Zhongguo, XI Guang Influence of the kernel function characteristics on the stability of pressure solution of moving particle semi-implicit method[J]. Journal of Xi’an Jiao Tong University, 2019, 53 (9): 1- 6
doi: 10.7652/xjtuxb201909001
[18]   VITA P, GSCHAIDER B F W, PRIELING D, et al. Thin film flow simulation on a rotating disc [C]// European Congress on Computational Methods in Applied Sciences and Engineering . Vienna: [s. n.], 2012.
[19]   徐刚. 移动粒子半隐式法算法研究[D]. 哈尔滨: 哈尔滨工程大学, 2007.
XU Gang. Research on algorithm of moving particle simi-implicit method [D]. Harbin: Harbin Engineering University, 2007.
[20]   郭栋, 罗冬源, 陈芳超 基于MPS方法的齿轮箱内部型腔结构搅油损失仿真分析[J]. 机械传动, 2022, 46 (3): 24- 30
GUO Dong, LUO Dongyuan, CHEN Fangchao Simulation analysis of churning loss of internal cavity structure of gearbox based on MPS method[J]. Journal of Mechanical Transmission, 2022, 46 (3): 24- 30
[21]   MOURA C A, KUBRUSLY C S. The Courant-Friedrichs-Lewy (CFL) condition: 80 years after its discovery [M]. Boston: Birkhäuser Basel, 2012.
[22]   AGMA. Effect of lubrication on gear surface distress: AGMA925-A03 [S]. Alexandria, USA: AGMA, 2003: 10.
[23]   姜义尧, 胡小舟, 孙凯 某型直升机中减速器飞溅润滑流场特性分析[J]. 航空动力学报, 2018, 33 (12): 3032- 3040
JIANG Yiyao, HU Xiaozhou, SUN Kai Analysis of flow field characteristics of medium reducer with splash lubrication in a certain helicopter[J]. Journal of Aerospace Power, 2018, 33 (12): 3032- 3040
[24]   李晏, 皮彪, 王叶枫, 等 基于移动粒子半隐式法的齿轮搅油损失分析与试验验证[J]. 同济大学学报:自然科学版, 2018, 46 (3): 368- 372
LI Yan, PI Biao, WANG Yefeng, et al Analysis and validation of churning loss of helical gear based on moving particle semi-implicit method[J]. Journal of Tongji University: Nature Science, 2018, 46 (3): 368- 372
[1] Chao-qi WU,Jian LUO,Ying ZHOU,Peng LOU,Yu YU. Performance simulation of complex oil circuit of inlet gearbox[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(11): 2337-2344.
[2] Zhu-peng WEN,Jie CHEN,Lian-hua LIU,Ling-ling JIAO. Fault diagnosis of wind power gearbox based on wavelet transform and improved CNN[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1212-1219.
[3] Huan-long LIU,Chi-xin XIE,Da-fa LI,Jia-wei WANG. Flow field distribution of splash lubrication of gearbox and churning gear torque loss[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 875-886.
[4] Wei CAO,Wei PU,Yi-pin WAN,Di WANG,Cun-bo LIU. Simplified calculation method for friction coefficient in point contact with arbitrary entrainment vector[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(12): 2307-2314.
[5] Yu ZHANG,Kai-lin ZHANG,Yuan YAO. Impact of rotating and thermal effects on leakage performance of gearbox with axial labyrinth seal[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1656-1662.
[6] ZHU Wen-ying, FENG Zhi-peng. Analysis of planetary gear vibration signal based on iterated Hilbert transform[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(8): 1587-1595.
[7] LIAO Xiang ping, GONG Guo fang, PENG Xiong bin, WU Wei qiang. Jam breakout characteristic of tunnel boring machine based on hydro viscous drive mechanism[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(5): 902-912.