Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (11): 2337-2344    DOI: 10.3785/j.issn.1008-973X.2023.11.021
    
Performance simulation of complex oil circuit of inlet gearbox
Chao-qi WU(),Jian LUO,Ying ZHOU,Peng LOU,Yu YU
AECC Commercial Aircraft Engine Co. Ltd, Shanghai 200241, China
Download: HTML     PDF(3454KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A complex oil circuit structure of inlet gearbox of an aeroengine was taken as as the research object. The oil circuit models of two-channel multi nozzle and one-channel multi nozzle were simulated and analyzed respectively and the pressure-oil volume flow rate model was established. The calculation results showed that the Realizable k-ε turbulence model can effectively capture the three-dimensional flow characteristics of the complex oil circuit structure of two-channel multi nozzle. The external streamline injection position of the oil nozzle orifice was in good agreement with the experimental phenomenon. The calculation accuracy was high. The extension method was used to predict the oil volume flow rate under the oil supply pressure of 0.30 MPa for the pressure-oil volume flow rate curve with the oil supply pressure of 0.05 MPa to 0.25 MPa. This value was in good agreement with the simulation calculation results and design requirements. As the oil supply pressure at the inlet of the oil circuit increased, oil volume flow coefficient of of oil nozzles also increased. Oil volume flow coefficient of the oil nozzles was positively correlated with the Reynolds number. When the oil supply pressure was 0.05 MPa to 0.30 MPa, the oil supply pressure and oil volume flow rate of the one-channel multi nozzle complex oil circuit model were quadratic functions.



Key wordsaero-engine      gearbox      complex oil circuit      extension method      oil volume flow coefficient     
Received: 20 January 2023      Published: 11 December 2023
CLC:  V 233.4  
Fund:  国家自然科学基金资助项目(MJ-2017-D-24)
Cite this article:

Chao-qi WU,Jian LUO,Ying ZHOU,Peng LOU,Yu YU. Performance simulation of complex oil circuit of inlet gearbox. Journal of ZheJiang University (Engineering Science), 2023, 57(11): 2337-2344.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.11.021     OR     https://www.zjujournals.com/eng/Y2023/V57/I11/2337


中央传动齿轮箱复杂油路性能仿真

以某航空发动机中央传动齿轮箱复杂油路结构为研究对象,分别对“双通道多喷嘴”和“单通道多喷嘴”油路模型进行三维流动仿真分析并建立压力-体积流量数学模型. 计算结果表明:Realizable k-ε湍流模型能够有效捕捉“双通道多喷嘴”复杂油路结构的三维流动特性,滑油喷嘴喷孔的外部流线喷射位置和试验现象较吻合,计算精度较高;对供油压力为0.05~0.25 MPa的压力-体积流量曲线采用“外延法”方式,能够较好地预测供油压力为0.30 MPa时的体积流量,该值与仿真计算结果和设计要求均较吻合;随着油路入口供油压力增加,所有滑油喷嘴体积流量系数也增加,滑油喷嘴体积流量系数和油路内滑油雷诺数呈正相关关系;当供油压力为0.05~0.30 MPa时,“单通道多喷嘴”复杂油路模型的供油压力和体积流量呈二次函数关系.


关键词: 航空发动机,  齿轮箱,  复杂油路,  外延法,  体积流量系数 
Fig.1 Oil supply model of inlet gearbox
Fig.2 Fluid domain and volume grid of oil circuit model
管流段序号 dp/mm Lp/mm
管流段1 14.5 179.28
管流段2 11.3 363.46
管流段3 11.3 749.54
管流段4 11.3 246.74
Tab.1 pipe information of two channel multi-nozzle oil circuit model
喷嘴序号 喷孔序号 dn/mm Ln/dn
喷嘴1 1.6 2.49
喷嘴2 0.8 2.47
喷嘴3 1.8 2.28
喷嘴4 1.8 2.28
喷嘴5 喷孔1 2.3 4.57
喷孔2 2.3 4.57
喷孔3 2.0 4.25
喷嘴6 喷孔4 2.3 4.57
喷孔5 2.3 4.57
喷孔6 2.0 4.25
Tab.2 Nozzle information of two channel multi-nozzle oil circuit model
p/MPa qV/(L·min?1) e/%
计算结果 试验结果
0.05 12.57 12.1 3.88
0.10 18.31 18.0 1.72
0.15 22.77 22.1 3.03
0.20 26.55 26.0 2.12
0.25 29.84 29.4 1.50
Tab.3 Comparison of calculation and test results of oil volume flow rate under different oil supply pressures
Fig.3 External streamline of gear engagement and drive rod spline
Fig.4 Internal streamline of two channel multi-nozzle model
Fig.5 External streamline of two channel multi-nozzle model
Fig.6 External streamline injection position of nozzle orifices in oil circuit model
Fig.7 Pressure distribution of two channel multi-nozzle model
部位 Δp/kPa pro/%
管流段1 1.65 0.14
管流段2 16.33 1.41
管流段3 23.81 2.05
管流段4 1.21 0.11
喷嘴1 291.16 25.09
喷嘴5 267.25 23.03
喷嘴6 265.67 22.90
机匣喷嘴 293.16 25.27
Tab.4 Pressure loss proportion of two channel multi-nozzle model
Fig.8 Oil volume flow coefficient at different oil supply pressures
Fig.9 Extension curve of oil volume flow rate with oil supply pressure
Fig.10 Pressure distribution and internal streamline of one channel multi-nozzle model
Fig.11 Fitting curve of oil volume flow rate with oil supply pressure
[1]   魏旭东 对航空发动机滑油系统的现状及未来发展分析[J]. 内燃机与配件, 2008, 10 (8): 95- 98
WEI Xu-dong Analysis of the current situation and future development of aviation engine oil lubrication systems[J]. Internal Combust Engine and Parts, 2008, 10 (8): 95- 98
[2]   杨昌祺, 蔚夺魁, 张茂强, 等 航空发动机中央传动失效故障分析[J]. 航空发动机, 2022, 48 (2): 83- 89
YANG Chang-qi, YU Duo-kui, ZHANG Mao-qiang, et al Failure analysis of central transmission system for an aero-engine[J]. Aeroengine, 2022, 48 (2): 83- 89
[3]   沈伟 航空发动机机械系统技术的探讨[J]. 内燃机与配件, 2022, 5 (1): 68- 70
SHEN Wei Discussion on aero engine mechanical system technology[J]. Internal Combustion Engine and Parts, 2022, 5 (1): 68- 70
[4]   梁作斌, 杜佳佳, 郭梅 齿轮风阻损失仿真及其实际应用[J]. 航空动力学报, 2017, 32 (6): 1419- 1424
LIANG Zuo-bin, DU Jia-jia, GUO Mei Simulation of gear windage losses and its application[J]. Journal of Aerospace Power, 2017, 32 (6): 1419- 1424
[5]   王翱, 谭武中 基于Flowmaster的行星齿轮箱喷射润滑系统设计与分析[J]. 润滑与密封, 2022, 47 (2): 102- 108
WANG Ao, TAN Wu-zhong Design and analysis of spray lubrication system for planetary gearbox based on flowmaster software[J]. Lubrication Engineering, 2022, 47 (2): 102- 108
[6]   葛玉柱, 雷雪梅, 张跃春, 等 采用高黏度润滑油的复杂管路齿轮箱润滑系统设计[J]. 润滑与密封, 2015, 40 (10): 122- 127
GE Yu-zhu, LEI Xue-mei, ZHANG Yue-chun, et al Design of gearbox lubrication system with complex pipeline and high viscosity lubricating oil[J]. Lubrication Engineering, 2015, 40 (10): 122- 127
[7]   王秋菊, 刘振刚, 乔恒稳, 等 高速重载圆柱齿轮弹流润滑数值分析[J]. 润滑与密封, 2022, 47 (3): 103- 109
WANG Qiu-ju, LIU Zhen-gang, QIAO Heng-wen, et al Numerical study of elasto hydrodynamic lubrication for high speed and heavy duty cylindrical gear[J]. Lubrication Engineering, 2022, 47 (3): 103- 109
[8]   FRANCO C, GORLA C Numerical modeling of the power losses in geared transmissions: windage churning and cavitation simulations with a new integrated approach that drastically reduces the computational effort[J]. Tribology International, 2016, 103: 58- 68
doi: 10.1016/j.triboint.2016.06.046
[9]   DAI Y, MA F, ZHU X, et al Numerical simulation investigation on the windage power loss of a high-speed face gear drive[J]. Energies, 2019, 12: 2093- 2098
doi: 10.3390/en12112093
[10]   ZHU X, DAI Y, MA F CFD modelling and numerical simulation on windage power loss of aeronautic high-speed spiral bevel gears[J]. Simulation Modelling Practice and Theory, 2020, 103 (3): 102- 108
[11]   刘海鸥, 刘兴星 弧齿锥齿轮动应力计算分析及测试研究[J]. 机械传动, 2016, 41 (9): 111- 114
LIU Hai-ou, LIU Xing-xing Numerical analysis and test research of the dynamic stress of spiral bevel gear[J]. Journal of Mechanical Transmission, 2016, 41 (9): 111- 114
[12]   林基恕. 航空发动机设计手册第12册传动及润滑系统: 第1版[M]. 北京: 航空工业出版社, 2002.
[13]   SHAHEED R, MOHAM A, KHEIRK G H A comparison of standard kε and realizable kε turbulence models in curved and confluent channels [J]. Environmental Fluid Mechanics, 2019, 19: 543- 568
doi: 10.1007/s10652-018-9637-1
[14]   陈长业, 李济顺, 余永健, 等 喷嘴结构对油气润滑环状流特性的影响[J]. 设计与研究, 2019, 2 (13): 64- 69
CHEN Chang-ye, LI Ji-shun, YU Yong-jian, et al Effect of nozzle structure on annular flow characteristics in oil-air lubrication[J]. Design and Research, 2019, 2 (13): 64- 69
[15]   El-GHAFOUR SA, El-GHANDOUR M, MIKHAEL N N Three-dimensional computational fluid dynamics simulation of stirling engine[J]. Energy Conversion and Management, 2019, 180 (15): 533- 549
[16]   王莹. 油气润滑系统中喷嘴的工作性能研究[D]. 北京: 北方工业大学, 2015: 16.
WANG Ying. Research on the working performances of a nozzle in the oil-air lubrication system[D]. Beijing: North China University of Technology, 2015: 16.
[17]   VIVEK K S, AKSHOY R P, ANUJ J. Capturing the wall turbulence in CFD simulation of human respiratory tract[J], Mathematics and Computers in Simulation, 2019, 160: 23-38.
[18]   胡青松. 基于直齿圆柱齿轮传动的油气润滑系统研究[D]. 重庆: 重庆理工大学, 2019: 6.
HU Qing-song. The research of oil-air lubrication system based on the spur gear transmission [D]. Chongqing: Chongqing University of Technology, 2019: 6.
[19]   ARASH B, HOSSEIN S Numerical study of asymmetrical oscillation of a bubble inside a rigid blood vessel under ultrasonic pressure using CFD, SIMPLE Algorithm[J]. American Journal of Fluid Dynamics, 2017, 7 (2): 49- 55
[20]   曾玉红. 流体力学: 第1版[M]. 武汉: 武汉理工大学出版社, 2019.
[21]   孙致月, 陈翾, 赵世明 基于CFD技术的管内流动精细仿真方法[J]. 中北大学学报: 自然科学版, 2017, 38 (5): 599- 604
SUN Zhi-yue, CHEN Xuan, ZHAO Shi-ming An accurate simulation method of pipe flow based on CFD[J]. Journal of North University of China: Natural Science Edition, 2017, 38 (5): 599- 604
[1] Zhu-peng WEN,Jie CHEN,Lian-hua LIU,Ling-ling JIAO. Fault diagnosis of wind power gearbox based on wavelet transform and improved CNN[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1212-1219.
[2] Yu ZHANG,Kai-lin ZHANG,Yuan YAO. Impact of rotating and thermal effects on leakage performance of gearbox with axial labyrinth seal[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1656-1662.
[3] Yan-zhong WANG,Kai YANG,Rong-hua QI,Yan-yan CHEN,Fei LI,Hao GAO. Ultra-high cycle fatigue life prediction method for aero engine impeller[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 621-627.
[4] ZHANG Jun-hong, WANG Jie, LU Xin, DAI Hu-wei, MA Liang. Rubbing process of aero-engine blades considering seal coating[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(5): 980-987.
[5] ZHU Wen-ying, FENG Zhi-peng. Analysis of planetary gear vibration signal based on iterated Hilbert transform[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(8): 1587-1595.