A self-supervised anomaly recognition method for wind turbine blades based on multi-channel vibration principal features was proposed, to address the difficulties in the timely and effective identification of abnormal states of wind turbine blade components. In the process of vibration feature construction, the variational mode decomposition-kernel principal component analysis (VMD-kPCA) method was proposed to achieve adaptive feature extraction of multi-channel vibration data in the nacelle. An adaptive bidirectional time-series convolutional network (ABT) was used as the backbone feature extractor to achieve self-supervised regression of vibration principal features, by integrating nacelle vibration with supervisory control and data acquisition (SCADA). A normal behavior model for wind turbine units was constructed based on other SCADA operational variables to eliminate the interference from other factors on the nacelle vibration features. High-precision blade anomaly identification was achieved using a residual sequence detection strategy based on the Mahalanobis distance. In terms of experimental validation, an actual dataset from a leading wind farm company was utilized to test the algorithm’s performance. Results showed that the proposed model had an accuracy rate higher than 90% for detecting three types of abnormalities: blade icing, blade oscillation, and blade tower sweeping, which was superior to other comparative models.
Bote WANG,Qing WANG,Qiang LIU,Bo JIN. Self-supervised anomaly recognition method for wind turbine blade based on multi-channel vibration principal features. Journal of ZheJiang University (Engineering Science), 2025, 59(3): 653-660.
Fig.3Vibration principal component self-supervised regression
Fig.4Normal behavior model of wind turbine
变量名
单位
变量名
单位
变量名
单位
实时风速
m/s
桨距角1
(°)
叶片1电机电流
A
发电机转速
r/min
桨距角2
(°)
叶片2电机电流
A
3 s平均测量功率
kW
桨距角3
(°)
叶片3电机电流
A
对风误差
(°)
叶片位置1
(°)
左右加速度1
m/s2
风向
(°)
叶片位置2
(°)
前后加速度1
m/s2
机舱温度
°C
叶片位置3
(°)
左右加速度2
m/s2
环境温度
°C
叶片1电机温度
°C
前后加速度2
m/s2
风轮转速
r/min
叶片2电机温度
°C
—
—
机舱位置
(°)
叶片3电机温度
°C
—
—
Tab.1SCADA-related variable table
Fig.5Low-frequency oscillation characteristics appearing after blade sweep of tower
Fig.6Frequency spectrum of low-frequency oscillation characteristics after wind turbine tower sweeping
模型名称
MSE
MAE
RMSE
SVR
0.0574
0.1784
0.2396
MLP
0.0262
0.1162
0.1619
GRU
0.0334
0.1226
0.1829
Transformer
0.0103
0.0920
0.1147
ABT-AK
0.0141
0.1047
0.1433
ABT-BD
0.0089
0.0881
0.0974
ABT
0.0054
0.0523
0.0728
Tab.2Comparison of regression performance of principal vibration characteristics of different models
框架名称
Acc/%
叶片结冰
叶片震荡
叶片扫塔
自编码器
44.23
81.72
88.71
振动有效值预测
37.98
64.15
71.60
二分类器
15.01
33.25
41.89
FFT-PCA
76.60
84.32
87.42
USAD
58.74
79.43
94.62
本模型框架
91.29
96.04
96.73
Tab.3Comparison of blade anomaly detection accuracy under different anomaly recognition frameworks
消融组
回归MAE
Acc/%
叶片结冰
叶片震荡
叶片扫塔
1)
0.476 0
45.77
77.57
83.64
2)
0.104 0
80.62
84.74
90.26
3)
0.0523
87.45
93.60
94.24
4)
0.0523
86.14
92.33
89.20
本模型
0.0523
91.29
96.04
96.73
Tab.4Ablation study for proposed anomaly recognition framework
[1]
Global Wind Energy Council. Global wind report 2023 [EB/OL]. (2023-12-12)[2023-12-30]. https://gwec.net/globalwindreport2023/.
[2]
REZAMAND M, KORDESTANI M, CARRIVEAU R, et al Critical wind turbine components prognostics: a comprehensive review[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69 (12): 9306- 9328
doi: 10.1109/TIM.2020.3030165
[3]
SHEN Y, CHEN B, GUO F, et al A modified deep convolutional subdomain adaptive network method for fault diagnosis of wind turbine systems[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 71
[4]
QU Y, HE D, YOON J, et al Gearbox tooth cut fault diagnostics using acoustic emission and vibration sensors: a comparative study[J]. Sensors, 2014, 14 (1): 1372- 1393
doi: 10.3390/s140101372
[5]
ABOUHNIK A, ALBARBAR A Wind turbine blades condition assessment based on vibration measurements and the level of an empirically decomposed feature[J]. Energy Conversion and Management, 2012, 64: 606- 613
doi: 10.1016/j.enconman.2012.06.008
[6]
QIAN M, WU H, LI Y F Wind turbine blade early fault detection with faulty label unknown and labeling bias[J]. IEEE Transactions on Industrial Informatics, 2023, 19 (7): 8116- 8126
[7]
ZHAO S, XIA J, DENG R, et al Dual-triggered adaptive torque control strategy for variable-speed wind turbine against denial-of-service attacks[J]. IEEE Transactions on Smart Grid, 2023, 14 (4): 3072- 3084
[8]
KUSIAK A, ZHANG Z, VERMA A Prediction, operations, and condition monitoring in wind energy[J]. Energy, 2013, 60: 1- 12
doi: 10.1016/j.energy.2013.07.051
[9]
HABIBI H, CHENG L, ZHENG H, et al A dual de-icing system for wind turbine blades combining high-power ultrasonic guided waves and low-frequency forced vibrations[J]. Renewable Energy, 2015, 83: 859- 870
doi: 10.1016/j.renene.2015.05.025
[10]
TANG J, SOUA S, MARES C, et al An experimental study of acoustic emission methodology for in service condition monitoring of wind turbine blades[J]. Renewable Energy, 2016, 99: 170- 179
doi: 10.1016/j.renene.2016.06.048
[11]
YANG R, HE Y, MANDELIS A, et al Induction infrared thermography and thermal-wave-radar analysis for imaging inspection and diagnosis of blade composites[J]. IEEE Transactions on Industrial Informatics, 2018, 14 (12): 5637- 5647
doi: 10.1109/TII.2018.2834462
[12]
ZHOU H, ZHANG S, PENG J, et al. Informer: beyond efficient transformer for long sequence time-series forecasting [C]// Proceedings of the AAAI Conference on Artificial Intelligence . [s. l.]: AAAI, 2021, 35: 11106–11115.
[13]
ZHOU T, MA Z, WEN Q, et al. Fedformer: frequency enhanced decomposed transformer for long-term series forecasting [C]// International Conference on Machine Learning . Baltimore: PMLR, 2022, 162: 27268−27286.
[14]
YANG L, ZHANG Z A conditional convolutional autoencoder-based method for monitoring wind turbine blade breakages[J]. IEEE Transactions on Industrial Informatics, 2021, 17 (9): 6390- 6398
[15]
WANG A, PEI Y, QIAN Z, et al A two-stage anomaly decomposition scheme based on multi-variable correlation extraction for wind turbine fault detection and identification[J]. Applied Energy, 2022, 321: 119373
doi: 10.1016/j.apenergy.2022.119373
[16]
WANG L, ZHANG Z, XU J, et al Wind turbine blade breakage monitoring with deep autoencoders[J]. IEEE Transactions on Smart Grid, 2018, 9 (4): 2824- 2833
[17]
VASWANI A, SHAZEER N, PARMAR N, et al Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017, 30: 6000- 6010
[18]
ZHANG X, HE C, LU Y, et al Fault diagnosis for small samples based on attention mechanism[J]. Measurement, 2022, 187: 110- 242
[19]
LIU G, SI J, MENG W, et al Wind turbine fault detection with multi-module feature extraction network and adaptive strategy[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 72
[20]
DRAGOMIRETSKIY K, ZOSSO D Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62 (3): 531- 544
[21]
SCHÖLKOPF B, SMOLA A, MÜLLER K Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Computation, 1998, 10 (5): 1299- 1319
doi: 10.1162/089976698300017467
[22]
BOYD S, PARIKH N, CHU E, et al Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends® in Machine Learning, 2011, 3 (1): 1- 122
[23]
DE MAESSCHALCK R, JOUAN-RIMBAUD D, MASSART D L The mahalanobis distance[J]. Chemometrics and Intelligent Laboratory Systems, 2000, 50 (1): 1- 18
doi: 10.1016/S0169-7439(99)00047-7
[24]
CHUNG J, GULCEHRE C, CHO K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling [EB/OL]. (2014-12-11)[2021-01-01]. https://doi.org/10.48550/arXiv.1412.3555.
[25]
PUKELSHEIM F The three sigma rule[J]. The American Statistician, 1994, 48 (2): 88- 91
doi: 10.1080/00031305.1994.10476030