Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (3): 653-660    DOI: 10.3785/j.issn.1008-973X.2025.03.023
    
Self-supervised anomaly recognition method for wind turbine blade based on multi-channel vibration principal features
Bote WANG1,Qing WANG1,2,*,Qiang LIU1,Bo JIN1
1. Zhejiang Huadong Mapping and Engineering Safety Technology Co. Ltd, Hangzhou 310014, China
2. POWERCHINA Huadong Engineering Co. Ltd, Hangzhou 310014, China
Download: HTML     PDF(1029KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A self-supervised anomaly recognition method for wind turbine blades based on multi-channel vibration principal features was proposed, to address the difficulties in the timely and effective identification of abnormal states of wind turbine blade components. In the process of vibration feature construction, the variational mode decomposition-kernel principal component analysis (VMD-kPCA) method was proposed to achieve adaptive feature extraction of multi-channel vibration data in the nacelle. An adaptive bidirectional time-series convolutional network (ABT) was used as the backbone feature extractor to achieve self-supervised regression of vibration principal features, by integrating nacelle vibration with supervisory control and data acquisition (SCADA). A normal behavior model for wind turbine units was constructed based on other SCADA operational variables to eliminate the interference from other factors on the nacelle vibration features. High-precision blade anomaly identification was achieved using a residual sequence detection strategy based on the Mahalanobis distance. In terms of experimental validation, an actual dataset from a leading wind farm company was utilized to test the algorithm’s performance. Results showed that the proposed model had an accuracy rate higher than 90% for detecting three types of abnormalities: blade icing, blade oscillation, and blade tower sweeping, which was superior to other comparative models.



Key wordswind turbine      blade anomaly detection      vibration characteristic extraction      temporal convolutional network      signal decomposition     
Received: 02 January 2024      Published: 10 March 2025
CLC:  TK 83  
  TK 89  
Fund:  中国博士后科学基金资助项目(2023M743311);浙江华东测绘与工程安全技术有限公司科技资助项目(ZKY2023-CA-01-01).
Corresponding Authors: Qing WANG   
Cite this article:

Bote WANG,Qing WANG,Qiang LIU,Bo JIN. Self-supervised anomaly recognition method for wind turbine blade based on multi-channel vibration principal features. Journal of ZheJiang University (Engineering Science), 2025, 59(3): 653-660.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.03.023     OR     https://www.zjujournals.com/eng/Y2025/V59/I3/653


基于多通道振动主元特征的风电机组叶片自监督异常识别方法

为了解决风电机组叶片部件异常状态难以及时和有效识别的问题,提出基于多通道振动主元特征的风电机组叶片自监督异常识别方法. 在振动特征构建过程中,采用变分模态分解-核主成分分析(VMD-kPCA)方法实现对机舱多通道振动数据的特征自适应提取;通过融合机舱振动与机组运行数据(SCADA),使用自适应双向时序卷积网络(ABT)作为骨干特征提取器,实现振动主元特征的自监督回归;基于其他SCADA运行变量构建风电机组正常行为模型,排除其他因素在机舱振动特征上的干扰;采用基于马氏距离的残差序列检出策略实现高精度叶片异常识别. 在实验验证方面,使用某龙头公司风电场的实际数据集进行算法性能测试,结果表明,本研究所提模型对叶片结冰、叶片震荡、叶片扫塔3种异常检测的准确率均高于90%,优于其他对比模型.


关键词: 风电机组,  叶片异常识别,  振动特征提取,  时序卷积网络,  信号分解 
Fig.1 Extraction of principal characteristics of acceleration vibrations in cabin
Fig.2 Adaptive bidirectional temporal convolutional network
Fig.3 Vibration principal component self-supervised regression
Fig.4 Normal behavior model of wind turbine
变量名单位变量名单位变量名单位
实时风速m/s桨距角1(°)叶片1电机电流A
发电机转速r/min桨距角2(°)叶片2电机电流A
3 s平均测量功率kW桨距角3(°)叶片3电机电流A
对风误差(°)叶片位置1(°)左右加速度1m/s2
风向(°)叶片位置2(°)前后加速度1m/s2
机舱温度°C叶片位置3(°)左右加速度2m/s2
环境温度°C叶片1电机温度°C前后加速度2m/s2
风轮转速r/min叶片2电机温度°C
机舱位置(°)叶片3电机温度°C
Tab.1 SCADA-related variable table
Fig.5 Low-frequency oscillation characteristics appearing after blade sweep of tower
Fig.6 Frequency spectrum of low-frequency oscillation characteristics after wind turbine tower sweeping
模型名称MSEMAERMSE
SVR0.05740.17840.2396
MLP0.02620.11620.1619
GRU0.03340.12260.1829
Transformer0.01030.09200.1147
ABT-AK0.01410.10470.1433
ABT-BD0.00890.08810.0974
ABT0.00540.05230.0728
Tab.2 Comparison of regression performance of principal vibration characteristics of different models
框架名称Acc/%
叶片结冰叶片震荡叶片扫塔
自编码器44.2381.7288.71
振动有效值预测37.9864.1571.60
二分类器15.0133.2541.89
FFT-PCA76.6084.3287.42
USAD58.7479.4394.62
本模型框架91.2996.0496.73
Tab.3 Comparison of blade anomaly detection accuracy under different anomaly recognition frameworks
消融组回归MAEAcc/%
叶片结冰叶片震荡叶片扫塔
1)0.476 045.7777.5783.64
2)0.104 080.6284.7490.26
3)0.052387.4593.6094.24
4)0.052386.1492.3389.20
本模型0.052391.2996.0496.73
Tab.4 Ablation study for proposed anomaly recognition framework
[1]   Global Wind Energy Council. Global wind report 2023 [EB/OL]. (2023-12-12)[2023-12-30]. https://gwec.net/globalwindreport2023/.
[2]   REZAMAND M, KORDESTANI M, CARRIVEAU R, et al Critical wind turbine components prognostics: a comprehensive review[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69 (12): 9306- 9328
doi: 10.1109/TIM.2020.3030165
[3]   SHEN Y, CHEN B, GUO F, et al A modified deep convolutional subdomain adaptive network method for fault diagnosis of wind turbine systems[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 71
[4]   QU Y, HE D, YOON J, et al Gearbox tooth cut fault diagnostics using acoustic emission and vibration sensors: a comparative study[J]. Sensors, 2014, 14 (1): 1372- 1393
doi: 10.3390/s140101372
[5]   ABOUHNIK A, ALBARBAR A Wind turbine blades condition assessment based on vibration measurements and the level of an empirically decomposed feature[J]. Energy Conversion and Management, 2012, 64: 606- 613
doi: 10.1016/j.enconman.2012.06.008
[6]   QIAN M, WU H, LI Y F Wind turbine blade early fault detection with faulty label unknown and labeling bias[J]. IEEE Transactions on Industrial Informatics, 2023, 19 (7): 8116- 8126
[7]   ZHAO S, XIA J, DENG R, et al Dual-triggered adaptive torque control strategy for variable-speed wind turbine against denial-of-service attacks[J]. IEEE Transactions on Smart Grid, 2023, 14 (4): 3072- 3084
[8]   KUSIAK A, ZHANG Z, VERMA A Prediction, operations, and condition monitoring in wind energy[J]. Energy, 2013, 60: 1- 12
doi: 10.1016/j.energy.2013.07.051
[9]   HABIBI H, CHENG L, ZHENG H, et al A dual de-icing system for wind turbine blades combining high-power ultrasonic guided waves and low-frequency forced vibrations[J]. Renewable Energy, 2015, 83: 859- 870
doi: 10.1016/j.renene.2015.05.025
[10]   TANG J, SOUA S, MARES C, et al An experimental study of acoustic emission methodology for in service condition monitoring of wind turbine blades[J]. Renewable Energy, 2016, 99: 170- 179
doi: 10.1016/j.renene.2016.06.048
[11]   YANG R, HE Y, MANDELIS A, et al Induction infrared thermography and thermal-wave-radar analysis for imaging inspection and diagnosis of blade composites[J]. IEEE Transactions on Industrial Informatics, 2018, 14 (12): 5637- 5647
doi: 10.1109/TII.2018.2834462
[12]   ZHOU H, ZHANG S, PENG J, et al. Informer: beyond efficient transformer for long sequence time-series forecasting [C]// Proceedings of the AAAI Conference on Artificial Intelligence . [s. l.]: AAAI, 2021, 35: 11106–11115.
[13]   ZHOU T, MA Z, WEN Q, et al. Fedformer: frequency enhanced decomposed transformer for long-term series forecasting [C]// International Conference on Machine Learning . Baltimore: PMLR, 2022, 162: 27268−27286.
[14]   YANG L, ZHANG Z A conditional convolutional autoencoder-based method for monitoring wind turbine blade breakages[J]. IEEE Transactions on Industrial Informatics, 2021, 17 (9): 6390- 6398
[15]   WANG A, PEI Y, QIAN Z, et al A two-stage anomaly decomposition scheme based on multi-variable correlation extraction for wind turbine fault detection and identification[J]. Applied Energy, 2022, 321: 119373
doi: 10.1016/j.apenergy.2022.119373
[16]   WANG L, ZHANG Z, XU J, et al Wind turbine blade breakage monitoring with deep autoencoders[J]. IEEE Transactions on Smart Grid, 2018, 9 (4): 2824- 2833
[17]   VASWANI A, SHAZEER N, PARMAR N, et al Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017, 30: 6000- 6010
[18]   ZHANG X, HE C, LU Y, et al Fault diagnosis for small samples based on attention mechanism[J]. Measurement, 2022, 187: 110- 242
[19]   LIU G, SI J, MENG W, et al Wind turbine fault detection with multi-module feature extraction network and adaptive strategy[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 72
[20]   DRAGOMIRETSKIY K, ZOSSO D Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62 (3): 531- 544
[21]   SCHÖLKOPF B, SMOLA A, MÜLLER K Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Computation, 1998, 10 (5): 1299- 1319
doi: 10.1162/089976698300017467
[22]   BOYD S, PARIKH N, CHU E, et al Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends® in Machine Learning, 2011, 3 (1): 1- 122
[23]   DE MAESSCHALCK R, JOUAN-RIMBAUD D, MASSART D L The mahalanobis distance[J]. Chemometrics and Intelligent Laboratory Systems, 2000, 50 (1): 1- 18
doi: 10.1016/S0169-7439(99)00047-7
[24]   CHUNG J, GULCEHRE C, CHO K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling [EB/OL]. (2014-12-11)[2021-01-01]. https://doi.org/10.48550/arXiv.1412.3555.
[25]   PUKELSHEIM F The three sigma rule[J]. The American Statistician, 1994, 48 (2): 88- 91
doi: 10.1080/00031305.1994.10476030
[1] Pinhan ZHOU,Lian SHEN,Yan HAN,Jialu XU,Lihua MI,Chunsheng CAI. Three-dimensional yaw wake model based on wind velocity deficit distribution of power function[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(1): 187-195.
[2] Zijun WANG,Kehao ZHUANG,Huanhai XIN,Dawei SUN,Linlin WU,Xiao WANG. Transient stability analysis of direct-driven wind turbines based on self-synchronous control[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(4): 867-878.
[3] Hai-feng LI,Xue-ying ZHANG,Shu-fei DUAN,Hai-rong JIA,Hui-zhi LIANG. Fusing generative adversarial network and temporal convolutional network for Mandarin emotion recognition[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(9): 1865-1875.
[4] Cong-er BAI,Zhe-jie SUN,Mei-juan QIN,Xiao WANG,Yong LIU. Dynamic response characteristics of wind turbine drivetrain and influence of support system[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1165-1174.
[5] Ling-gang KONG,Jia YU,Yun-min CHEN. Centrifuge tests of ship impact on pile groups beneath offshore wind turbines[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 330-339.
[6] Ze-hao ZHU,Fu-sheng TONG,Zhen GUO,Li-zhong WANG,Jia-li ZHANG,Jiang-bo CHEN. Model test on long-term dynamic characteristics study of gravity foundation onshore wind turbine[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1744-1751.
[7] Ren-qiang XI,Xiu-li DU,Pi-guang WANG,Cheng-shun XU,Kun XU. Integrated seismic response of monopile supported offshore wind turbines[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 757-766.
[8] Qi CHEN,Dan-yang LI,Hong-wei LIU,Yong-gang LIN,Wei LI,Jing-long DING. Load simulation technology for ground test system of wind turbine drive chain[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 299-306.
[9] Hao-yu WU,Yong-sheng ZHAO,Yan-ping HE,Wen-gang MAO,Jie YANG,Xiao-li GU,Chao HUANG. Transient response analysis of tension-leg-platformfloating offshore wind turbine under tendon failure conditions[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2196-2203.
[10] Jian-bin ZHAO,Yi-bo XI,Zhen-yu WANG. Fatigue damage calculation method of monopile supported offshore wind turbine[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1711-1719.
[11] Wen-jie ZHOU,Li-zhong WANG,Lv-jun TANG,Zhen GUO,Sheng-jie RUI,Yu-pei HUANG. Numerical analysis of dynamic responses of jacket supported offshore wind turbines[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1431-1437.
[12] Wen-hao XU,Zhan QIU,Bo-ping YU,Fu-xin WANG. Numerical simulation on flow field characteristics of a double-layer counter-rotating vertical axis wind turbine[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2223-2230.
[13] Shi-tang KE,Wen-lin YU,Lu XU,Ling-yun DU,Wei YU,Qing YANG. Flow fields and aerodynamic loads of wind turbine considering yaw effect under wind and rain interaction[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1936-1945.
[14] YUAN Ren-yu, LUO Kun, WANG Jian-wen, JI Wen-ju, ZHANG Li-ru, WANG Qiang, FAN Jian-ren. Numerical simulation of wind turbine operation control under dynamic inflow condition[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(11): 2128-2135.
[15] ZHOU Tao, HE Yan-ping, MENG Long, ZHAO Yong-sheng. Motion response analysis of a new 6 MW Spar-type floating offshore wind turbine using coupled simulations[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 1864-1873.