Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (6): 1165-1174    DOI: 10.3785/j.issn.1008-973X.2023.06.012
    
Dynamic response characteristics of wind turbine drivetrain and influence of support system
Cong-er BAI1,2(),Zhe-jie SUN1,2,Mei-juan QIN1,2,Xiao WANG1,2,Yong LIU1,2
1. Zhejiang Windey Co., Ltd., Hangzhou 310012, China
2. Key Laboratory of Wind Power Technology of Zhejiang Province, Hangzhou 310012, China
Download: HTML     PDF(2793KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

To investigate the dynamic response of wind turbine drivetrain, a multi-body dynamic simulation model with rigid-flexible coupling drivetrain was established for a certain MW class wind turbine, which was taken as the research object. The influence of frame flexibility, isolator stiffness of gearbox and generator on the dynamic response characteristics of drivetrain, including the modal of drivetrain, the resonance and the dynamic response under different wind conditions, was analyzed respectively. The validity of the model was verified through in-plant vibration test in time domain and frequency domain. Results show that the modals where the vibration energy is mainly distributed in the generator shell and the gearbox housing are affected mostly by the support system. Reasonable stiffness design of the support system can effectively reduce the resonance risk of the drivetrain. The time domain analysis results show that the vibration velocity deviation of components caused by resonance can reach up to 120%. Increasing the isolator stiffness of gearbox and decreasing the isolator stiffness of generator are conducive for reducing the vibration level of drivetrain.



Key wordswind turbine      drivetrain      support system      dynamic response characteristic      dynamic simulation     
Received: 27 May 2022      Published: 30 June 2023
CLC:  TK 83  
  TH 113.1  
Fund:  浙江省重点研发计划资助项目(2021C01150)
Cite this article:

Cong-er BAI,Zhe-jie SUN,Mei-juan QIN,Xiao WANG,Yong LIU. Dynamic response characteristics of wind turbine drivetrain and influence of support system. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1165-1174.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.06.012     OR     https://www.zjujournals.com/eng/Y2023/V57/I6/1165


风电机组传动链动力响应特性与支撑系统影响

针对风力发电机组传动链动力学响应问题,以某兆瓦级风电机组为研究对象,建立传动链刚柔耦合的多体动力学仿真模型.分别分析机架柔性、齿轮箱弹性支撑刚度、发电机弹性支撑刚度对传动链动力响应特性(包括传动链模态、谐振与不同风况条件下的振动响应)的影响规律;通过实验室内振动测试,分别从时域和频域上验证模型的有效性. 结果表明:支撑系统对振动能量主要分布在发电机壳体、齿轮箱箱体的模态影响最大,合理进行支撑系统刚度设计能够有效降低传动链共振风险. 时域分析结果表明,谐振引起的零部件振动速度偏差最大达到120%;增大齿轮箱弹性支撑刚度并降低发电机弹性支撑刚度,有助于降低传动链振动水平.


关键词: 风电机组,  传动链,  支撑系统,  动力响应特性,  动力学仿真 
Fig.1 Rigid-flexible coupling multi-body model of wind turbine drivetrain
参数 数值
kg-x/(kN·mm?1) 7
kg-ykg-z/(kN·mm?1) 350
Dg 0.10
ke-xke-y /(kN·mm?1) 18
ke-z/(kN·mm?1) 15
De 0.01
nin/(r·min?1) 1 100
nout/(r·min?1) 1 750
Vr/(m·s?1) 8.8
Tab.1 Key parameters of wind turbine drivetrain
N fN/Hz 主要模态振型 N fN/Hz 主要模态振型
1 1.24 系统扭转 17 285.67 齿轮箱低速级+中间级扭转
2 1.78 系统扭转 18 303.53 联轴器扭转
3 9.19 发电机壳体+转子平动 19 315.78 齿轮箱箱体+低速级6自由度耦合
4 10.05 发电机壳体+转子平动 20 400.99 主轴扭转
5 12.97 发电机壳体+转子平动 21 419.92 齿轮箱中间级6自由度
6 19.24 发电机壳体+转子转动 22 462.19 齿轮箱高速级+联轴器扭转
7 24.74 发电机壳体+转子转动 23 482.57 齿轮箱箱体转动
8 25.02 发电机壳体+转子转动 24 484.37 齿轮箱中间级转动
9 26.26 系统扭转 25 496.00 低速级平动
10 43.07 齿轮箱箱体6自由度 26 517.19 发电机转子平动
11 146.56 高速级平动 27 808.30 齿轮箱中间级转动
12 167.83 齿轮箱箱体+低速级扭转 28 1070.25 齿轮箱低速级转动
13 197.44 齿轮箱箱体转动 29 1169.80 主轴+齿轮箱低速级耦合
14 200.04 齿轮箱低速级平动 30 1451.39 齿轮箱高速级6自由度
15 206.06 齿轮箱中间级平动 31 1648.17 齿轮箱高速级6自由度
16 250.20 齿轮箱箱体+中间级6自由度耦合 32 2219.61 齿轮箱中间级转动
Tab.2 Natural frequencies and main mode shapes of wind turbine drivetrain
Fig.2 Typical mode shapes of wind turbine drivetrain
Fig.3 Campbell diagram of wind turbine drivetrain
点编号 f/Hz 激励源
1 19.24 高速轴转频基频
2 24.74 高速轴转频基频
3 25.02 高速轴转频基频
4 26.26 高速轴转频基频
5 43.07 高速轴转频2倍频
6 43.07 低速级齿轮啮频3倍频
7 167.83 中间级齿轮啮频2倍频
8 197.44 中间级齿轮啮频2倍频
9 206.06 中间级齿轮啮频2倍频
10 250.20 中间级齿轮啮频3倍频
11 285.67 中间级齿轮啮频3倍频
12 315.78 中间级齿轮啮频3倍频
13 1 451.39 高速级齿轮啮频2倍频
14 1 648.17 高速级齿轮啮频3倍频
Tab.3 Potential resonances of wind turbine drivetrain
N 机架2 机架3
fN/Hz σ/% fN/Hz σ/%
3 12.79 39.16 13.01 41.63
4 13.57 35.11 13.32 32.58
5 19.49 50.31 25.31 95.24
6 27.91 45.06 28.41 47.67
7 31.69 28.11 32.64 31.93
8 32.05 28.08 33.84 35.24
10 55.18 28.12 56.20 30.48
12 174.31 3.86 175.82 4.76
13 262.12 32.76 269.85 36.68
15 199.70 -3.09 183.23 -11.08
16 258.44 3.29 240.11 -4.03
19 411.07 30.18 426.53 35.07
23 515.26 6.77 535.28 10.92
Tab.4 Natural frequencies of drivetrains using frame 2 and frame 3 and deviation from wind turbine drivetrain using frame 1
点编号 f/Hz 激励源
机架2 机架3
1 19.49 25.31 高速轴转频基频
2 26.29 26.29 高速轴转频基频
3 27.91 28.41 高速轴转频基频
4 55.18 56.20 高速轴转频2倍频
5 174.31 175.82 中间级齿轮啮频2倍频
6 199.70 183.23 中间级齿轮啮频2倍频
7 258.44 240.11 中间级齿轮啮频3倍频
8 262.12 269.85 中间级齿轮啮频3倍频
9 283.79 280.33 中间级齿轮啮频3倍频
10 515.26 535.28 高速级齿轮啮频基频
11 1452.67 1453.12 高速级齿轮啮频2倍频
12 1642.03 1643.52 高速级齿轮啮频3倍频
Tab.5 Potential resonances of wind turbine drivetrains using frame 2 and frame 3
N Yoke2 Yoke3
fN/Hz σ/% fN/Hz σ/%
10 34.18 ?20.64 43.41 0.79
12 156.34 ?6.85 169.43 0.95
13 189.20 ?4.17 200.10 1.35
16 236.73 ?5.39 252.46 0.90
19 328.04 3.88 309.72 ?1.92
23 430.34 ?10.82 570.87 18.30
Tab.6 Natural frequencies of wind turbine drivetrains using various isolators of gearbox
kN/mm
名称 ke-x ke-y ke-z
Iso2 12.0 12.0 10
Iso3 8.4 8.4 7
Iso4 4.5 4.5 4
Tab.7 Stiffness of common types of generator isolator
N Iso2 Iso3 Iso4
fN/Hz σ/% fN/Hz σ/% fN/Hz σ/%
3 6.33 ?31.11 6.13 ?33.24 4.40 ?52.16
4 7.69 ?23.45 6.17 ?38.63 5.20 ?48.24
5 7.79 ?39.91 7.04 ?45.72 6.29 ?51.48
6 16.00 ?16.85 13.52 ?29.73 7.76 ?59.67
7 19.09 ?22.81 16.38 ?33.77 9.99 ?59.63
8 20.83 ?16.74 19.07 ?23.77 12.56 ?49.81
10 41.03 ?4.75 41.19 ?4.37 40.96 ?4.90
Tab.8 Natural frequencies of wind turbine drivetrains using various isolator stiffnesses of generator
Fig.4 Wind turbine co-simulation model
Fig.5 Vibration velocity frequency domain of two isolator systems
Fig.6 Vibration velocity response of drivetrain under different working conditions
Fig.7 Vibration acceleration response of drivetrain under different working conditions
Fig.8 Vibration test schematic of wind turbine drivetrain
Fig.9 Comparison of vibration velocity response at different points of wind turbine drivetrain
Fig.10 Vibration velocity spectrum at different points of wind turbine drivetrain under rated operating condition
[1]   李垚, 朱才朝, 陶友传, 等 风电机组可靠性研究现状与发展趋势[J]. 中国机械工程, 2017, 28 (9): 1125- 1133
LI Yao, ZHU Cai-chao, TAO You-chuan, et al Research status and development tendency of wind turbine reliability[J]. China Mechanical Engineering, 2017, 28 (9): 1125- 1133
[2]   SCHLECHT B, SCHULZE T, DEMTRÖDER J. Multibody-system-simulation of drive trains of wind turbines [C]// 2002 AGMA Fall Technical Meeting. Alexandria: American Gear Manufacturers Association, 2002.
[3]   Det Norske Veritas Group. Machinery for wind turbines: DNV-ST-0361 [S]. [S.l.]: DNV, 2016.
[4]   BEASLEY N J. Effects of component model fidelity level on dynamic analysis accuracy of a multi-MW Wind turbine drivetrain [D]. Clemson: Clemson University, 2019.
[5]   李辉, 仇世龙, 柴兆森, 等 计及齿轮全柔性的风电机组传动链有限元建模及扭振特性分析[J]. 太阳能学报, 2020, 41 (3): 80- 88
LI Hui, QIU Shi-long, CHAI Zhao-sen, et al Finite element modeling and torsional vibration analysis of wind turbine drivetrain considering full flexibility of gears[J]. Acta Energiae Solaris Sinica, 2020, 41 (3): 80- 88
[6]   仇世龙. 双馈风电机组传动链建模与扭振疲劳损耗研究[D]. 石河子: 石河子大学, 2020.
QIU Shi-long. Study on modeling and torsional fatigue loss of Doubly-fed wind turbine drivetrain [D]. Shihezi: Shihezi University, 2020.
[7]   黄伟. 风电机组多体系统建模与动态特性仿真分析研究[D]. 重庆: 重庆大学, 2013.
HUANG Wei. Multibody system modeling and simulation analysis and research on dynamic characteristic of wind turbine [D]. Chongqing: Chongqing University, 2013.
[8]   杜静, 秦月, 李成武 风力发电机组传动链动力学建模与仿真分析[J]. 太阳能学报, 2014, 35 (10): 1950- 1957
DU Jing, QIN Yue, LI Cheng-wu Dynamics modeling and simulation analysis of wind turbine drive train[J]. Acta Energiae Solaris Sinica, 2014, 35 (10): 1950- 1957
[9]   刘桦, 邓良, 阳小林 兆瓦级风电机组传动链动力学建模及仿真方法研究[J]. 东方汽轮机, 2016, (2): 51- 63
LIU Hua, DENG Liang, YANG Xiao-lin Research on dynamics modeling and simulation method of drive train for mega-watts wind turbine[J]. Dongfang Turbine, 2016, (2): 51- 63
[10]   赵榕梅. 基于多柔体建模的风电机组传动链动态设计评估方法[D]. 北京: 华北电力大学, 2020.
ZHAO Rong-mei. Dynamic design evaluation method of wind turbine drive train based on multi-flexible body modeling [D]. Beijing: North China Electric Power University, 2020.
[11]   谭建军, 朱才朝, 宋朝省, 等 风电机组传动链刚柔耦合动态特性分析[J]. 太阳能学报, 2020, 41 (7): 341- 351
TAN Jian-jun, ZHU Cai-chao, SONG Chao-sheng, et al Dynamic characteristics analysis of wind turbine drivetrain with rigid-flexible coupling[J]. Acta Energiae Solaris Sinica, 2020, 41 (7): 341- 351
[12]   TAN J J, ZHU C C, SONG C S, et al Dynamic modeling and analysis of wind turbine drivetrain considering platform motion[J]. Mechanism and Machine Theory, 2019, 140: 781- 808
doi: 10.1016/j.mechmachtheory.2019.06.026
[13]   ZHANG S L, ZHU C C, SONG C S, et al Natural characteristic analysis of wind turbine drivetrain considering flexible supporting[J]. Journal of Mechanical Engineering Science, 2018, 232 (5): 842- 856
doi: 10.1177/0954406217692006
[14]   许亚能. 基于柔性支撑的大兆瓦风力发电机组动力学建模与仿真分析[D]. 重庆: 重庆大学, 2019.
XU Ya-neng. Dynamic modeling and simulation analysis of large MW wind turbine based on flexible support [D]. Chongqing: Chongqing University, 2019.
[15]   马德福. 风电机组主轴承的刚柔耦合建模与动态响应研究[D]. 兰州: 兰州理工大学, 2018.
MA De-fu. Study on rigid-flexible coupling modeling and dynamic response of main bearings of wind turbine [D]. Lanzhou: Lanzhou University of Technology, 2018.
[16]   CRAIG JR R R, BAMPTON M C C Coupling of substructures for dynamic analyses[J]. AIAA Journal, 1968, 6 (7): 1313- 1319
doi: 10.2514/3.4741
[17]   李梦雪. 旋转机械金属橡胶基础隔振试验与仿真研究[D]. 大庆: 东北石油大学, 2018.
LI Meng-xue. Experimental and simulation study on vibration isolation system of rotating machinery [D]. Daqing: Northeast Petroleum University, 2018.
[18]   Dassault Systèmes Simulia Corporation. Bearing modules [Z].[2022-03-15]. https://www.3ds.com/products-services/simulia/products/simpack/product-modules/bearing-modules.
[19]   The Association of German Engineer (VDI). Measurement and evaluation of the mechanical vibration of wind turbines and their components: wind turbines with gearbox: VDI 3834 part 1 [S]. [S.l.]: VDI-GPP, 2015.
[1] Ling-gang KONG,Jia YU,Yun-min CHEN. Centrifuge tests of ship impact on pile groups beneath offshore wind turbines[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 330-339.
[2] Ze-hao ZHU,Fu-sheng TONG,Zhen GUO,Li-zhong WANG,Jia-li ZHANG,Jiang-bo CHEN. Model test on long-term dynamic characteristics study of gravity foundation onshore wind turbine[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1744-1751.
[3] Ren-qiang XI,Xiu-li DU,Pi-guang WANG,Cheng-shun XU,Kun XU. Integrated seismic response of monopile supported offshore wind turbines[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 757-766.
[4] Qi CHEN,Dan-yang LI,Hong-wei LIU,Yong-gang LIN,Wei LI,Jing-long DING. Load simulation technology for ground test system of wind turbine drive chain[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 299-306.
[5] Hao-yu WU,Yong-sheng ZHAO,Yan-ping HE,Wen-gang MAO,Jie YANG,Xiao-li GU,Chao HUANG. Transient response analysis of tension-leg-platformfloating offshore wind turbine under tendon failure conditions[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2196-2203.
[6] Jian-bin ZHAO,Yi-bo XI,Zhen-yu WANG. Fatigue damage calculation method of monopile supported offshore wind turbine[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1711-1719.
[7] Wen-jie ZHOU,Li-zhong WANG,Lv-jun TANG,Zhen GUO,Sheng-jie RUI,Yu-pei HUANG. Numerical analysis of dynamic responses of jacket supported offshore wind turbines[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1431-1437.
[8] Wen-hao XU,Zhan QIU,Bo-ping YU,Fu-xin WANG. Numerical simulation on flow field characteristics of a double-layer counter-rotating vertical axis wind turbine[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2223-2230.
[9] Shi-tang KE,Wen-lin YU,Lu XU,Ling-yun DU,Wei YU,Qing YANG. Flow fields and aerodynamic loads of wind turbine considering yaw effect under wind and rain interaction[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1936-1945.
[10] XIA Yi-min, QIAN Cong, LI Zheng-guang, Mei Yong-bing. Vibration characteristics of TBM supporting-thrusting system[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(2): 233-239.
[11] YUAN Ren-yu, LUO Kun, WANG Jian-wen, JI Wen-ju, ZHANG Li-ru, WANG Qiang, FAN Jian-ren. Numerical simulation of wind turbine operation control under dynamic inflow condition[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(11): 2128-2135.
[12] YANG Jin-yao, FANG Meng-xiang, CEN Qi-gang, WANG Tao, HE Hui. Simulation of capturing carbon dioxide from flue gas by activated carbon[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(11): 2142-2149.
[13] ZHOU Tao, HE Yan-ping, MENG Long, ZHAO Yong-sheng. Motion response analysis of a new 6 MW Spar-type floating offshore wind turbine using coupled simulations[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 1864-1873.
[14] QIN Pei-jiang, MA Yong-liang, HAN Chao-shuai, QU Xian-qiang. Frequency-domain fatigue assessment of support structure for offshore wind turbine[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(9): 1712-1719.
[15] ZHU Zhou-jie, ZHU Bin, LI Tao, WANG Lu-jun, WEN Kai. Analysis approach of piled jacket foundation in sand for offshore wind turbines subjected to lateral loads[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(11): 2150-2157.