Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (11): 2196-2203    DOI: 10.3785/j.issn.1008-973X.2020.11.015
    
Transient response analysis of tension-leg-platformfloating offshore wind turbine under tendon failure conditions
Hao-yu WU1,2,3(),Yong-sheng ZHAO1,2,3,Yan-ping HE1,2,3,*(),Wen-gang MAO4,Jie YANG1,2,3,Xiao-li GU1,2,3,Chao HUANG1,2,3
1. State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2. Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240, China
3. School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
4. Department of Mechanics and Maritime Sciences, Chalmers University of Technology, Gothenburg SE-41296, Sweden
Download: HTML     PDF(1815KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The mooring load calculation module of the fully coupled dynamic simulation software FAST was recompiled, and the transient response of a tension-leg-platform floating offshore wind turbine (FOWT) named WindStar TLP system under tendon failure was numerically simulated using a time domain method, in terms of the coupled system of wind turbine, tension-leg-type support platform and tendons. The transient response of the key parameters, i.e., platform motions, nacelle accelerations and tensions in the remaining tendons under different wave directions in 50-year extreme condition were investigated. Results show that the transient response of platform motions, nacelle accelerations and tendon tensions under tendon failure are significant. The transient response of FOWT with the broken tendon in back waves is greater than that with the broken tendon in head waves. And when the broken tendon in back waves is aligned with the wave, the transient response of FOWT is the maximum. The safety factor for tendon system under tendon failure in 50-year extreme condition meets the requirements of specification constituted by American Bureau of Shipping (ABS), which verifies the survivability of this tension-leg-type FOWT.



Key wordsfloating offshore wind turbines      tension-leg platform      tendon failure      transient response      time domain analysis     
Received: 22 November 2019      Published: 15 December 2020
CLC:  P 753  
  TM 614  
Corresponding Authors: Yan-ping HE     E-mail: haoyuwu@sjtu.edu.cn;hyp110@sjtu.edu.cn
Cite this article:

Hao-yu WU,Yong-sheng ZHAO,Yan-ping HE,Wen-gang MAO,Jie YANG,Xiao-li GU,Chao HUANG. Transient response analysis of tension-leg-platformfloating offshore wind turbine under tendon failure conditions. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2196-2203.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.11.015     OR     http://www.zjujournals.com/eng/Y2020/V54/I11/2196


张力腿浮式风机筋腱失效模式下瞬态响应分析

针对风力机-张力腿型支撑平台-筋腱耦合系统,对全耦合动力学仿真软件FAST的系泊载荷计算模块进行二次开发,采用时域分析方法对张力腿浮式风机(FOWT)WindStar TLP system筋腱失效模式下的瞬态响应进行数值仿真分析. 重点研究50 a一遇海况中不同浪向下的浮式风力机支撑平台运动、机舱加速度和筋腱张力等关键参数的瞬态响应. 结果表明:在该工况下支撑平台运动、机舱加速度、筋腱张力的瞬态响应较显著;失效筋腱位于背浪侧时的浮式风力机瞬态响应大于失效筋腱位于迎浪侧时的浮式风力机瞬态响应,当位于背浪侧的失效筋腱与波浪共线时,浮式风力机瞬态响应最大;在极端海况中筋腱失效模式下的筋腱系统安全系数符合美国船级社规范要求,表明该张力腿型浮式风力机具备较好的自存性.


关键词: 海上浮式风力机,  张力腿平台,  筋腱失效,  瞬态响应,  时域分析 
Fig.1 Illustration of multi-column TLP floating wind turbine
参数 单位 数值
设计吃水 ${\rm{m}}$ 30.0
排水量 ${\rm{t}}$ 5466.0
下浮体重心高度 ${\rm{m}}$ 24.6
筋腱总预张力 ${\rm{t}}$ 2370.0
筋腱直径 ${\rm{mm}}$ 227.0
筋腱干重 ${\rm{kg} } / { {\rm{m} }}$ 35.4
筋腱轴向刚度 ${\rm{MN}}$ 391.0
筋腱最小破断载荷 ${\rm{MN}}$ 17.26
Tab.1 Main parameters of multi-column TLP floating wind turbine
Fig.2 Elastic rod model
Fig.3 Simulation flowchart of tendon failure
工况 失效
筋腱
$v_{\rm w}$ /(m·s?1) $H_{\rm s} $ /m $T_{\rm p} $ /s $\gamma$ D /(°)
1 47.5 13.8 19.2 2.4 0~360
2 #1 47.5 13.8 19.2 2.4 0~360
3 #3 47.5 13.8 19.2 2.4 0~360
Tab.2 Definition of tendon failure cases
Fig.4 Schematic diagram of directions of wind and wave
s
工况 Tsur Tswa Thea Trol Tpit Tyaw
筋腱完整 45.50 45.50 3.66 4.87 4.87 25.60
筋腱#1失效 45.53 45.53 3.94 4.87 6.40 25.65
筋腱#3失效 45.53 45.53 3.94 6.40 6.40 25.65
Tab.3 Natural motion periods of multi-column TLP floating wind turbine
Fig.5 Power spectral density of pitch under tendon failure in still water
Fig.6 Pitch time series under wave direction of 180°
Fig.7 Power spectral density of pitch under wave direction of 180°
Fig.8 Maximum pitch and roll under different wave directions
Fig.9 Maximum surge under different wave directions
Fig.10 Time series of nacelle sway acceleration under wave direction of 60°
Fig.11 Maximum nacelle acceleration under different wave directions
Fig.12 Time series of tensions in remaining tendons under wave direction of 180° in tendon #1 failure condition
Fig.13 Power spectral density of tendon #2 tension under wave direction of 180°
Fig.14 Maximum tendon tension under different wave directions
[1]   刘利琴, 韩袁昭, 肖昌水, 等 新型浮式基础的海上风机系统动力响应研究[J]. 海洋工程, 2018, 36 (1): 19- 26
LIU Li-qin, HAN Yuan-zhao, XIAO Chang-shui, et al Research on dynamic response of offshore wind turbine system based on new semisubmersible-spar hybrid floating foundation[J]. The Ocean Engineering, 2018, 36 (1): 19- 26
[2]   TABESHPOUR M R, AHMADI A, MALAYJERDI E Investigation of TLP behavior under tendon damage[J]. Ocean Engineering, 2018, 156: 580- 595
doi: 10.1016/j.oceaneng.2018.03.019
[3]   TIMERMAN G J, CAMPOS M A D, NISHIMOTO K, et al. Coupled dynamic and static analysis of typhoon TLP accident during extreme environmental conditions [C]// International Conference on Offshore Mechanics and Arctic Engineering. Estoril: OMAE, 2008.
[4]   李梦阳. 海上浮式风机平台锚泊系统设计与研究[D]. 哈尔滨: 哈尔滨工程大学, 2013.
LI Meng-yang. Study on mooring system of floating offshore wind turbine platform [D]. Harbin: Harbin Engineering University, 2013.
[5]   BAE Y H, KIM M H, SHIN Y S. Rotor-floater-mooring coupled dynamic analysis of mini TLP-type offshore floating wind turbines [C]// International Conference on Ocean, Offshore and Arctic Engineering. Shanghai: OMAE, 2010.
[6]   BAE Y H, KIM M H, KIM H C Performance changes of a floating offshore wind turbine with broken mooring line[J]. Renewable Energy, 2017, 101: 364- 375
doi: 10.1016/j.renene.2016.08.044
[7]   LI Y, ZHU Q, LIU L, et al Transient response of a SPAR-type floating offshore wind turbine with fractured mooring lines[J]. Renewable Energy, 2018, 122: 576- 588
doi: 10.1016/j.renene.2018.01.067
[8]   施伟, 郑侃, 任年鑫 南海海况下半潜浮式风机在故障工况下的动力学响应分析[J]. 南方能源建设, 2018, 5 (4): 12- 20
SHI Wei, ZHENG Kan, REN Nian-xin Dynamic analysis of semi-type floating offshore wind turbine with failure conditions under metocean[J]. Southern Energy Construction, 2018, 5 (4): 12- 20
[9]   Det Norske Veritas. Floating wind turbine structures: DNVGL-ST-D119 [S]. Oslo: [s.n.], 2018.
[10]   American Bureau of Shipping. Guide for building and classing floating offshore wind turbine installations: ABS 0195 [S]. Houston: [s.n.], 2013.
[11]   CLASSNK. Guidelines for offshore floating wind turbine structures [S]. Tokyo: [s.n.], 2012.
[12]   ZHAO Y, YANG J, HE Y Preliminary design of a multi-column TLP foundation for a 5-MW offshore wind turbine[J]. Energies, 2012, 5 (10): 3874- 3891
doi: 10.3390/en5103874
[13]   周涛, 何炎平, 孟龙, 等 新型6 MW单柱浮式风力机耦合运动分析[J]. 浙江大学学报: 工学版, 2018, 52 (10): 1864- 1873
ZHOU Tao, HE Yan-ping, MENG Long, et al Motion response analysis of a new 6 MW Spar-type floating offshore wind turbine using coupled simulations[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (10): 1864- 1873
[14]   JONKMAN J, BUTTERFIELD S, MUSIAL W, et al. Definition of a 5-MW reference wind turbine for offshore system development [R]. Golden: National Renewable Energy Lab, 2009.
[15]   MORIARTY P J, HANSEN A C. AeroDyn theory manual [R]. Golden: National Renewable Energy Lab, 2005.
[16]   BAE Y H. Development of a dynamic mooring module feam for fast v8 [R]. Texas: Texas A&M University, 2014.
[17]   韦斯俊. 浮式结构物系泊系统时域非线性耦合分析[D]. 哈尔滨: 哈尔滨工业大学, 2014.
WEI Si-jun. Nonlinear time-domain coupled analysis of mooring systems of floating structures [D]. Harbin: Harbin Institute of Technology, 2014.
[18]   ZHAO Y, YANG J, HE Y, et al Coupled dynamic response analysis of a multi-column tension-leg-type floating wind turbine[J]. China Ocean Engineering, 2016, 30 (4): 505- 520
doi: 10.1007/s13344-016-0031-9
[19]   ZHAO Y, YANG J, HE Y, et al Dynamic response analysis of a multi-column tension-leg-type floating wind turbine under combined wind and wave loading[J]. Journal of Shanghai Jiaotong University: Science, 2016, 21 (1): 103- 111
doi: 10.1007/s12204-015-1689-5
[20]   ZHAO Y, SHE X, HE Y, et al Experimental study on new multi-column tension-leg-type floating wind turbine[J]. China Ocean Engineering, 2018, 32 (2): 123- 131
doi: 10.1007/s13344-018-0014-0
[21]   Det Norske Veritas. SESAM user manual [R]. Oslo: [s.n.], 2013.
[22]   赵永生, 杨建民, 何炎平, 等 张力腿式浮动风力机极限载荷分析[J]. 华中科技大学学报: 自然科学版, 2015, 43 (4): 113- 117
ZHAO Yong-sheng, YANG Jian-min, HE Yan-ping, et al Extreme load analysis for a TLP-type floating wind turbine under operating conditions[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2015, 43 (4): 113- 117
[1] BAO Kan-Yuan, CHEN Guo-Hui, SUN Bing-Nan. Numerical simulation of fluctuating wind load and windinduced
response of large hyperbolic cooling tower
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(5): 955-961.