Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (2): 299-306    DOI: 10.3785/j.issn.1008-973X.2021.02.010
    
Load simulation technology for ground test system of wind turbine drive chain
Qi CHEN1(),Dan-yang LI2,Hong-wei LIU2,*(),Yong-gang LIN2,Wei LI2,Jing-long DING2
1. Zhejiang Windey Co. Ltd, Hangzhou 310012, China
2. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(1512KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A load simulation technology for ground test system of wind turbine drive chain was proposed. The ground drive chain test system of wind turbines were discussed, and the inertiamoment of impeller under the drag test was calculated. Three main non-torque five-degree-of-freedom loading structural schemes were summarized, i.e., symmetrical loading scheme, radial eccentric loading scheme and parallel six hydraulic cylinders loading scheme. The loading principles of the schemes were discussed, and the load solving equations of the three schemes were constructed. A 100 kW wind turbine drive chain test system loading experimental bench was designed and constructed based on the principle of symmetrical loading scheme in order to further simulate the six-degree-of-freedom load of the wind turbine. The load was accurately reproduced, the feasibility and the rationality of the non-torque five-degree-of-freedom loading technology was verified, and combined with the wind torque load simulation technology, a complete simulation of the wind turbine's six-degree-of-freedom load was achieved.



Key wordswind turbine      drive chain test      six degree-of-freedom load simulation technology      non-torque five degree-of-freedom loading      drive chain loading system test bench     
Received: 17 March 2020      Published: 09 March 2021
CLC:  TM 614  
Fund:  国家自然科学基金资助项目(51821093);浙江省自然科学基金重点资助项目(LZ19E050001)
Corresponding Authors: Hong-wei LIU     E-mail: chenq@chinawindey.com;zju000@163.com
Cite this article:

Qi CHEN,Dan-yang LI,Hong-wei LIU,Yong-gang LIN,Wei LI,Jing-long DING. Load simulation technology for ground test system of wind turbine drive chain. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 299-306.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.02.010     OR     http://www.zjujournals.com/eng/Y2021/V55/I2/299


风电机组传动链地面测试系统载荷模拟技术

提出风电机组传动链地面测试系统载荷模拟技术. 论述风电机组地面传动链测试系统,对拖动实验下叶轮的转动惯量进行计算,分析总结3种主要的非扭矩五自由度加载结构方案:对称加载方案、径向偏心加载方案与并联六液压缸加载方案,论述方案的加载原理,并构建3种方案的载荷求解方程. 为了进一步模拟风电机组六自由度的载荷,根据对称加载方案原理设计搭建100 kW风电机组传动链测试系统加载实验台,实验对非扭矩五自由度载荷进行了精确复现,验证了非扭矩五自由度加载技术的可行性与合理性,再结合对风力转矩载荷的模拟技术,实现了对风电机组六自由度载荷的完整模拟.


关键词: 风电机组,  传动链测试,  六自由度载荷模拟技术,  非扭矩五自由度加载,  传动链测试系统实验台 
Fig.1 Drive chain testing system for wind turbines
Fig.2 Structure of wind turbine drive chain test system
Fig.3 Schematic chart of wind turbine load decomposition
Fig.4 Schematic diagram of axial and radial loading of bearing disk in symmetrical loading scheme
Fig.5 Schematic diagram of axial and radial loading of bearing disk in radial eccentric loading scheme
Fig.6 Loading scheme of parallel six hydraulic cylinders
参数 数值/型号
液压站驱动电机额定功率 25 kW
液压泵额定转速 1450 r/min
液压泵额定体积流量 20 L/min
油缸工作压力 20 MPa
比例伺服阀 4WRA6E-15-24
液压缸 YGD-80/56EX25-TB3121-71
Tab.1 Parameters and types of main components for 100 kW wind turbine non-torque loading test bench
Fig.7 Experimental bench of wind turbine drive chain loading system
Fig.8 Single-cylinder step loading experimental result
Fig.9 5-degree-of-freedom step load recurrence results
Fig.10 5-degree-of-freedom transient load recurrence results
[1]   2018年中国风电装机容量统计[J]. 风能, 2018(5): 44-46+48-57.
Statistics of installed capacity of wind power in China in 2017 [J]. Wind Energy, 2018(5): 44-46+48-57.
[2]   北极星风力发电网. 未来的海上风电将会如何发展 [EB/OL]. (2018-01-23) [2020-03-17]. http://news.bjx.com.cn/html/20180123/875951.shtml.
[3]   田德, 马晓慧 国内外大型风电机组关键技术发展趋势(二)[J]. 风能, 2016, (3): 28- 31
TIAN De, MA Xiao-hui Key technological development trends of large wind turbines at home and abroad(2)[J]. Wind Energy, 2016, (3): 28- 31
doi: 10.3969/j.issn.1674-9219.2016.03.009
[4]   赵恒真. 风电机五自由度电液加载系统仿真与实验研究[D]. 杭州: 浙江大学, 2017.
ZHAO Heng-zhen. Wind turbine five degree of freedom electro-hydraulic loading system simulation and experimental research [D]. Hangzhou: Zhejiang University, 2017.
[5]   胡书举, 孟岩峰, 宋斌, 等 大型风电机组传动链测试系统国内外现状及展望[J]. 大功率变流技术, 2017, (6): 10- 14
HU Shu-ju, MENG Yan-feng, SONG Bin, et al Present situation and prospect of drive chain testing system for large wind turbines at home and abroad[J]. High Power Converter Technology, 2017, (6): 10- 14
[6]   宋斌, 胡书举, 孟岩峰, 等 大型风电机组传动链地面试验工况模拟技术研究综述[J]. 可再生能源, 2018, 36 (5): 730- 736
SONG Bin, HU Shu-ju, MENG Yan-feng, et al Summary of ground test condition simulation technology forlarge wind turbine transmission chain[J]. Renewable Energy, 2018, 36 (5): 730- 736
doi: 10.3969/j.issn.1671-5292.2018.05.017
[7]   5 Wind turbine test beds: 15 MW test rig, 7.5 MW test rig [EB/OL] (2017-09-10) [2020-03-17]. http://clemsonenergy.com/wind-turbinetest-beds.
[8]   Powertrain facilities [EB/OL]. (2019-01-24) [2020-03-17]. https: //ore. catapult. org. uk/what-we-do/testing-validation/powertrain-facilities/.
[9]   Nacelle testing and examination of electrical characteristics [EB/OL]. (2018-08-10) [2020-03-17]. https: //www. iwes. fraunhofer. de/zh/_---dynalab. html.
[10]   Inauguration at lind? offshore renewables center(LORC) [EB/OL]. (2019-01-24) [2020-03-17]. https: //www. lorc. dk/test-facilities.
[11]   殷秀兴. 风电系统主传动链的载荷复现与功率平滑[D]. 杭州: 浙江大学, 2016.
YIN Xiu-xing. Load reproduction and power smoothing transmission of main transmission chain of wind power system [D]. Hangzhou: Zhejiang University, 2016.
[12]   YIN X X, LIN Y G, LI W, et al Loading system and control strategy for simulating wind turbine loads[J]. Journal of Vibration and Control, 2017, 23 (11): 1739- 1752
doi: 10.1177/1077546315600110
[13]   陈杰, 龚春英, 陈家伟, 等 两种风力机动态模拟方法的比较[J]. 电工技术学报, 2012, 27 (10): 79- 85
CHEN Jie, GONG Chun-ying, CHEN Jia-wei, et al Comparison of two dynamic simulation methods forwind turbines[J]. Journal of Electrical Technology, 2012, 27 (10): 79- 85
[14]   李旭, 孟岩峰, 胡书举, 等 风力机机械特性模拟方法分析研究[J]. 可再生能源, 2014, 32 (8): 1150- 1154
LI Xu, MENG Yan-feng, HU Shu-ju, et al Analysis and research on mechanical characteristics simulation method of wind turbine[J]. Renewable Energy, 2014, 32 (8): 1150- 1154
[15]   刘颖, 周波, 郭鸿浩, 等 基于转矩伪微分反馈的风轮机动静态特性模拟[J]. 电工技术学报, 2014, 29 (11): 116- 125
LIU Ying, ZHOU Bo, GUO Hong-hao, et al Dynamic and static characteristics simulation of wind turbines based onpseudo-differential feedback of torque[J]. Journal of Electrical Technology, 2014, 29 (11): 116- 125
doi: 10.3969/j.issn.1000-6753.2014.11.014
[16]   YIN X X, LIN Y G, LI W, et al Reproduction of five degree-of-freedom loads for wind turbine using equispaced electro-hydraulic actuators[J]. Renewable Energy, 2015, 83: 626- 637
[17]   王成东. 模拟风力机载荷的电液加载装置的设计研究[D]. 杭州: 浙江大学, 2016.
WANG Cheng-dong. Design and research of electro-hydraulic loading device for simulating wind turbine load [D]. Hangzhou: Zhejiang University, 2016.
[18]   殷秀兴, 王成东, 王菁, 等 风电机组五自由度载荷复现的控制技术[J]. 太阳能学报, 2018, 39 (12): 3568- 3576
YIN Xiu-xing, WANG Cheng-dong, WANG Jing, et al Control technology of wind turbine five degree of freedom load recurrence[J]. Journal of Solar Energy, 2018, 39 (12): 3568- 3576
[19]   殷秀兴, 林勇刚, 叶杭冶, 等 复现风力机五自由度载荷的主动静压加载控制[J]. 太阳能学报, 2018, 39 (11): 3185- 3192
YIN Xiu-xing, LIN Yong-gang, YE Hang-ye, et al Active hydrostatic loading control reappearing five-degree-of-freedom gradient of wind turbine[J]. Journal of Solar Energy, 2018, 39 (11): 3185- 3192
[20]   殷秀兴, 顾亚京, 林勇刚, 等 复现风力机五自由度载荷的加载控制方法[J]. 浙江大学学报: 工学版, 2015, 49 (8): 1470- 1477
YIN Xiu-xing, GU Ya-jing, LIN Yong-gang, et al Load control method for recurrence of 5-DOF loadof wind turbine[J]. Journal of Zhejiang University: Engineering Edition, 2015, 49 (8): 1470- 1477
[1] Ren-qiang XI,Xiu-li DU,Pi-guang WANG,Cheng-shun XU,Kun XU. Integrated seismic response of monopile supported offshore wind turbines[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 757-766.
[2] Hao-yu WU,Yong-sheng ZHAO,Yan-ping HE,Wen-gang MAO,Jie YANG,Xiao-li GU,Chao HUANG. Transient response analysis of tension-leg-platformfloating offshore wind turbine under tendon failure conditions[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2196-2203.
[3] Jian-bin ZHAO,Yi-bo XI,Zhen-yu WANG. Fatigue damage calculation method of monopile supported offshore wind turbine[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1711-1719.
[4] Wen-jie ZHOU,Li-zhong WANG,Lv-jun TANG,Zhen GUO,Sheng-jie RUI,Yu-pei HUANG. Numerical analysis of dynamic responses of jacket supported offshore wind turbines[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1431-1437.
[5] Wen-hao XU,Zhan QIU,Bo-ping YU,Fu-xin WANG. Numerical simulation on flow field characteristics of a double-layer counter-rotating vertical axis wind turbine[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2223-2230.
[6] Shi-tang KE,Wen-lin YU,Lu XU,Ling-yun DU,Wei YU,Qing YANG. Flow fields and aerodynamic loads of wind turbine considering yaw effect under wind and rain interaction[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1936-1945.
[7] YUAN Ren-yu, LUO Kun, WANG Jian-wen, JI Wen-ju, ZHANG Li-ru, WANG Qiang, FAN Jian-ren. Numerical simulation of wind turbine operation control under dynamic inflow condition[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(11): 2128-2135.
[8] ZHOU Tao, HE Yan-ping, MENG Long, ZHAO Yong-sheng. Motion response analysis of a new 6 MW Spar-type floating offshore wind turbine using coupled simulations[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 1864-1873.
[9] QIN Pei-jiang, MA Yong-liang, HAN Chao-shuai, QU Xian-qiang. Frequency-domain fatigue assessment of support structure for offshore wind turbine[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(9): 1712-1719.
[10] ZHU Zhou-jie, ZHU Bin, LI Tao, WANG Lu-jun, WEN Kai. Analysis approach of piled jacket foundation in sand for offshore wind turbines subjected to lateral loads[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(11): 2150-2157.
[11] KE Shi tang, YU Wei, WANG Tong guang. Impact for blade position on aerodynamic performance of  wind turbine system under stopped status[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(7): 1230-1238.
[12] YIN Xiu-xing, GU Ya-jing, LIN Yong-gang, YE Hang-ye, LI Wei. Loading control method of reproducing 5 DOF loads to wind turbine[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(8): 1470-1477.
[13] KE Shi-tang, WANG Tong-guang, CHEN Shao-lin, GE Yao-jun. Wind-induced responses and equivalent static wind load of large wind turbine system[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(4): 686-692.
[14] ZHU Cheng-dang, TU Le, LIN Yong-gang, LIU Hong-wei, LI Wei. Hydro-mechanical hybrid power transmission technology in wind turbines[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(10): 1767-1774.
[15] YUAN Xing-fei, YU Jun-Wei. Wind-induced response analysis of wind turbine tower installed on building roof[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(11): 1911-1916.