Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (6): 1157-1164    DOI: 10.3785/j.issn.1008-973X.2023.06.011
    
Optimization and experimental study of heat transfer in liquid-cooled plate of full-featured disturbance element cells
Yong ZHANG1(),Shen-gong PAN1,Shui-chang LIU1,*(),Feng-zhao MAO1,Qing-yu WANG1,He LIU1,Yi-fei YIN2
1. School of Mechanical Engineering, Hunan University of Technology, Zhuzhou 412007, China
2. School of Vehicle Operation, Hunan Automotive Engineering Vocational College, Zhuzhou 412007, China
Download: HTML     PDF(1832KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A liquid-cooled plate with low thermal resistance, low-pressure loss and uniform temperature is important to guarantee the range of the power battery pack and delay the decay of cell life. To improve the heat transfer performance of the liquid-cooled plate, a power battery pack liquid-cooled plate was used as the object, the temperature uniformity coefficient was constructed, and a new full-featured disturbance element model was proposed. The characteristic parameters and arrangement parameters of the disturbance element were optimized, and a liquid-cooled plate heat transfer experimental rig was built to verify the accuracy of the simulation results of the temperature and pressure drop. Results showed that when the ratio of width to length of the disturbance element structure was 1, the ratio of disturbance element structure width to runner width was 0.5, and the interval between two disturbance elements was 15 mm, the comprehensive performance of the liquid-cooled plate was optimal. After optimization, the temperature uniformity coefficient of the liquid-cooled plate was reduced from 0.339 to 0.121, with an optimization range of 186.03%; the maximum temperature of the liquid-cooled plate after optimization was 24.7 ℃, with a temperature difference of 3 ℃, and the comprehensive error between simulation calculation results and experimental results was 3.79%.



Key wordspower battery pack      liquid-cooled plate      full-featured disturbance element      temperature uniformity coefficient      strengthening heat transfer     
Received: 22 September 2022      Published: 30 June 2023
CLC:  TM 912  
Fund:  湖南省重点研发项目(2022GK2065);湖南省教育厅科学研究重点项目(20A157,18A258);湖南省科技创新计划资助项目(2021RC4065)
Corresponding Authors: Shui-chang LIU     E-mail: 289714423@qq.com;834130255@qq.com
Cite this article:

Yong ZHANG,Shen-gong PAN,Shui-chang LIU,Feng-zhao MAO,Qing-yu WANG,He LIU,Yi-fei YIN. Optimization and experimental study of heat transfer in liquid-cooled plate of full-featured disturbance element cells. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1157-1164.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.06.011     OR     https://www.zjujournals.com/eng/Y2023/V57/I6/1157


全特征扰流元电池液冷板传热优化与实验研究

低热阻、低压损和均匀温度的液冷板对保障动力电池包续航里程、延缓电芯寿命衰减具有重要意义. 以改善液冷板传热性能为目标,以某款动力电池包液冷板为对象,构建温度均匀性系数,提出新型全特征扰流元模型. 开展扰流元特征参数和布置参数寻优,搭建液冷板传热实验台架,验证温度和压降仿真结果的准确性. 结果表明:当扰流元的结构宽度与长度之比为1、扰流元的结构宽度与流道宽度之比为0.5、2个扰流元间隔为15 mm时,液冷板综合性能最佳. 优化后液冷板温度均匀性系数由0.339降到0.121,优化幅度为180.16%;优化后液冷板最高温度为24.7 ℃,温差为3 ℃,仿真计算结果与实验结果的综合误差为3.79%.


关键词: 动力电池包,  液冷板,  全特征扰流元,  温度均匀性系数,  强化传热 
Fig.1 Original liquid-cooled plate model
Fig.2 Calorific value experiment of single cell
Fig.3 Physical drawing of liquid-cooled plate and heating film
材料 ρ/(kg·m-3) c/(J·kg?1?K?1) K/(W·m?2?K?1) v/(m·s?1)
热源 1 300 1 973 150
液冷板 2 700 900 209
冷却介质 997 4 181 0.62 0.25
Tab.1 Thermophysical properties of simulation materials
Fig.4 Monitoring unit location layout diagram
Fig.5 Heat dissipation cloud diagram of original liquid-cooled plate
Fig.6 Structure of full-feature disturbance element
Fig.7 Geometrical model of single runner with disturbance element
Fig.8 Variation of aspect ratio of disturbance element to turbulence intensity, pressure drop of flow channel
Fig.9 Cloud diagram of velocity distribution of cooling medium when aspect ratio of disturbance element is 1
Fig.10 Variation of width ratio of disturbance element and flow channel to turbulence intensity, pressure drop of flow channel
Fig.11 Backflow phenomenon at tail of disturbance element
Fig.12 Cloud diagram of velocity distribution of cooling medium when width ratio of disturbance element and flow channel is 0.5
Fig.13 Variation of number of disturbance element to turbulence intensity, pressure drop of flow channel
Fig.14 Variation of interval of disturbance element to turbulence intensity, pressure drop of flow channel
Fig.15 Cloud diagram of velocity distribution of cooling medium when interval of disturbance element is 15 mm
Fig.16 Liquid-cooled plate of fully-featured disturbance element structure
Fig.17 Heat dissipation cloud diagram of optimized liquid-cooled plate
Fig.18 Heat transfer experiment platform of liquid-cooled plate
Fig.19 Heat dissipation cloud picture of heated film from thermal imager takes
[1]   BANDHAUER T M, GARIMELLA S, FULLER T F, et al A critical review of thermal issues in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2011, 158 (3): R1- R25
doi: 10.1149/1.3515880
[2]   LI T, ZHANG L, SUN Q, et al Capacity loss induced by lithium deposition at graphite anode for LiFePO4/graphite cell cycling at different temperatures [J]. Electrochim Acta, 2013, 111: 802- 808
doi: 10.1016/j.electacta.2013.08.074
[3]   WRINGHT R B, CHRISTOPHERSEN J P, MOTLOCH C G, et al Power fade and capacity fade resulting from cycle-life testing of advanced technology development program lithium-ion batteries[J]. Journal of Power Sources, 2003, 119–121: 865- 869
[4]   LU L G, HAN X B, LI J Q, et al A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources, 2013, 226: 272- 288
doi: 10.1016/j.jpowsour.2012.10.060
[5]   WANG C H, LIN T, HUANG J T, et al Temperature response of a high power lithium-ion battery subjected to high current discharge[J]. Mater Research Innovations, 2015, 19 (Suppl.2): 156- 160
[6]   SPOTNITZ R, FRANKLIN J Abuse behavior of high-power, lithium-ion cells[J]. Journal of Power Sources, 2003, 113 (1): 81- 100
doi: 10.1016/S0378-7753(02)00488-3
[7]   ROBINSON J B, DARR J A, EASTWOOD D S, et al Nonuniform temperature distribution in Li-ion batteries during discharge: a combined thermal imaging, X-ray micro-tomography and electrochemical impedance approach[J]. Journal of Power Sources, 2014, 252: 51- 57
doi: 10.1016/j.jpowsour.2013.11.059
[8]   曾祥兵, 谢堃, 张伟, 等 新型动力电池热管理系统设计及性能研究[J]. 汽车工程, 2022, 44 (4): 476- 481
ZENG Xiang-bing, XIE Kun, ZHANG Wei, et al Design and performance study of a new type of thermal management system for traction battery[J]. Automotive Engineering, 2022, 44 (4): 476- 481
[9]   徐晓明. 动力电池热管理技术——散热系统热流场分析 [M]. 北京: 机械工业出版社, 2018
[10]   SHAOSEN S U, LI W, LI Y S, et al Multi-objective design optimization of battery thermal management system for electric vehicles[J]. Applied Thermal Engineering, 2021, 196: 117235
doi: 10.1016/j.applthermaleng.2021.117235
[11]   余剑武, 陈亚玲, 范光辉, 等 锂电池并行流道液冷板结构设计和散热性能分析[J]. 吉林大学学报: 工学版, 2022, 52 (12): 2788- 2795
YU Jian-wu, CHEN Ya-ling, FAN Guang-hui, et al Structure design and thermal dissipation performance analysis of liquid cooling plates with parallel flow channels for lithium batteries[J]. Journal of Jilin University: Engineering and Technology Edition, 2022, 52 (12): 2788- 2795
[12]   DENG T, RAN Y, YIN Y L, et al Multi-objective optimization design of thermal management system for lithium-ion battery pack based on non-dominated sorting genetic algorithm II[J]. Applied Thermal Engineering, 2020, 164: 114394
doi: 10.1016/j.applthermaleng.2019.114394
[13]   FAN Y W, WANG Z H, FU T Multi-objective optimization design of lithium-ion battery liquid cooling plate with double-layered dendritic channels[J]. Applied Thermal Engineering, 2021, 199: 117541
doi: 10.1016/j.applthermaleng.2021.117541
[14]   WANG J F, LIU X D, LIU F, et al Numerical optimization of the cooling effect of the bionic spider-web channel cold plate on a pouch lithium-ion battery[J]. Case Studies in Thermal Engineering, 2021, 26: 101124
doi: 10.1016/j.csite.2021.101124
[15]   LI P, LUO Y Y, ZHANG D, et al Flow and heat transfer characteristics and optimization study on the water-cooled microchannel heat sinks with dimple and pin-fin[J]. International Journal of Heat and Mass Transfer, 2018, 119: 152- 162
doi: 10.1016/j.ijheatmasstransfer.2017.11.112
[16]   ANDREOZZI A, MANCA O, NARDINI S, et al Forced convection enhancement in channels with transversal ribs and nanofluids[J]. Applied Thermal Engineering, 2016, 98: 1044- 1053
doi: 10.1016/j.applthermaleng.2015.12.140
[17]   KHAN A A, KIM S M, KIM K Y Performance analysis of a microchannel heat sink with various rib configurations[J]. Journal of Thermophysics and Heat Transfer, 2016, 30 (4): 782- 790
doi: 10.2514/1.T4663
[18]   LIU J, XIE G, SIMON T W, et al Turbulent flow and heat transfer enhancement in rectangular channels with novel cylindrical grooves[J]. International Journal of Heat and Mass Transfer, 2015, 81: 563- 577
doi: 10.1016/j.ijheatmasstransfer.2014.10.021
[19]   XU X M, HE R Review on the heat dissiPation performance of battery pack with different structures and operation conditions[J]. Renewable and Sustainable Energy Reviews, 2014, 29: 301- 315
doi: 10.1016/j.rser.2013.08.057
[20]   WELTENS H, BRESSIER H, TERRES F, et al Optimization of catalytic converter gas flow distribution by CFD prediction[J]. SAE Technical Paper, 1993, 930780
[21]   周全, 夏克青. Rayleigh-Bénard对流中温度边界层统计特性的实验研究 [C]// 中国力学学会学术大会'2009论文摘要集. 郑州: [s.n.], 2009: 173-174.
ZHOU Quan, XIA Ke-qing. Experimental study on statistical properties of temperature boundary layer in Rayleigh-Bénard convection [C]// Abstract collection of Papers '2009 Conference of Chinese Society of Mechanics. Zhengzhou: [s.n.], 2009: 173-174.
[1] Xue XIA,Zhen ZHAO,Jin-jie ZHANG,Liang TANG. Mechanical integrity of cylindrical automotive lithium-ion batteries and modules[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2134-2141.
[2] Ke-bing LEI,Zi-qiang CHEN. Estimation of state of charge of battery based on improved multi-innovation extended Kalman filter[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1978-1985.
[3] Bin PAN,Dong DONG,Dong-pei QIAN,Shu-qiang NIU,Shuang-yu LIU,Yin-zhu JIANG. Quick identification of internal resistance components for lithium ion battery with LiFePO4 cathode[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 189-194.
[4] Jia-ming WU,Zi-qiang CHEN. Fault diagnosis of internal short circuit of lithium battery pack in variable low temperature environment[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1433-1439.