Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (11): 2134-2141    DOI: 10.3785/j.issn.1008-973X.2021.11.014
    
Mechanical integrity of cylindrical automotive lithium-ion batteries and modules
Xue XIA(),Zhen ZHAO,Jin-jie ZHANG,Liang TANG*()
School of Technology, Beijing Forestry University, Beijing 100083, China
Download: HTML     PDF(1299KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to provide a highly accessible method to explore the mechanical integrity of automotive cylindrical lithium-ion batteries (LIBs) and battery modules, a series of multidirectional loading tests for LIBs at various states of charge (SOC) were conducted to figure out both mechanical and electrochemical response of the LIBs when subjected to mechanical abuse. An homogeneous material model for battery cells was proposed and mechanical model of single LIB with both SOC dependence and anisotropy was established, in terms of the analytic results of experimental data. Two mechanical short-circuit criteria, practical for above-mentioned single LIB model, were proposed and calibrated. Detailed battery module models of two specific packing modes were established based on the single battery model. Homogenization method of the detailed battery module model was illustrated and homogeneous battery module material model was developed. According to the homogeneous material model, homogeneous battery module models of two different packing modes were developed and verified by the mechanical loading experiments of the battery modules. Experimental results show that this homogeneous battery module can predict the performance under multi-direction mechanical abuse precisely with less computing effort.



Key wordsautomotive engineering      lithium-ion battery      electric vehicle      finite element model      crash safety     
Received: 22 October 2020      Published: 05 November 2021
CLC:  TM 912  
Fund:  中央高校基本科研业务费专项资金资助项目(2021ZY69);国家自然科学基金资助项目(51975057);湖北省重点实验室2021 年开放课题资助项目(XDQCKF2021004)
Corresponding Authors: Liang TANG     E-mail: xiaxue_buaa@163.com;happyliang@bjfu.edu.cn
Cite this article:

Xue XIA,Zhen ZHAO,Jin-jie ZHANG,Liang TANG. Mechanical integrity of cylindrical automotive lithium-ion batteries and modules. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2134-2141.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.11.014     OR     https://www.zjujournals.com/eng/Y2021/V55/I11/2134


车用圆柱锂电池及模组的机械完整性

为了获取能高效准确探究锂离子电池(LIBs)及模组机械完整性的方法,通过实验探究各荷电状态(SOC)下圆柱锂电池单体在受到不同方向机械外载作用下的机械响应及电化学失效情况. 基于实验结果提出均质化电池单体材料模型,建立具有SOC相关性、各向异性的电池单体模型,并提出适用于该模型的2种电池单体失效力学判据. 基于该单体模型获取2种典型堆积形式下的电池模组模型,并提出基于该细致模组模型的均质化建模方法,进一步提取出特定堆积方式下的电池模组均质化材料模型,建立相应的均质化电池模组模型,并通过电池模组力学加载实验进行验证. 实验结果显示,该均质化电池模组模型能够高效并准确地预测电池模组在复合机械加载条件下的响应.


关键词: 车辆工程,  锂离子电池,  电动汽车,  有限元模型,  碰撞安全 
Fig.1 Experimental results under four typical loading conditions of mechanical abuse experiment
Fig.2 Fitting curves of strain-stress relationship for battery cell material and representation of its SOC dependency
Fig.3 Validation of simulation results with experimental data under four different loading conditions
模型 S/mm N t/s
均质化电池单体 4.0 16 42
独立电池壳+均质化电芯模型 2.5 16 212
细致化电池模型 0.3~0.8 16 43200
Tab.1 Computational effort demanded for different typical battery models
Fig.4 Schematic diagram and finite element model of two specific packing modes: cubic dense packing and hexagonal dense packing
Fig.5 Experimental setups of compression experiments for battery modules of two specific packing modes and validation of detailed model simulation results with experimental data
Fig.6 True stress-strain curves of two typical packing modes in uniaxial compression simulation
Fig.7 Comparison between experimental data and simulation results of limited compression tests for battery module arranged in two specific packing modes
[1]   ABABA S, MARLAIR G, LECOCQ A, et al Safety focused modeling of lithium-ion batteries: a review[J]. Journal of Power Sources, 2016, 306 (11): 178- 192
[2]   LU L, HAN X, LI J, et al A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources, 2013, 226 (10): 272- 288
[3]   BALOGUN M S, LUO Y, QIU W, et al A review of carbon materials and their composites with alloy metals for sodium ion battery anodes[J]. Carbon, 2015, 98 (9): 162- 178
[4]   WANG L, YIN S, ZHANG C, et al Mechanical characterization and modeling for anodes and cathodes in lithium-ion batteries[J]. Journal of Power Sources, 2018, 392 (5): 265- 273
[5]   ZHANG J N, LI Q, WANG Y, et al Dynamic evolution of cathode electrolyte interphase (CEI) on high voltage LiCoO2 cathode and its interaction with Li anode [J]. Energy Storage Materials, 2017, 14 (2): 1- 7
[6]   LIN C, TANG A, MU H, et al. Aging mechanisms of electrode materials in lithium-ion batteries for electric vehicles[EB/OL]. (2015-06-21). https://doi.org/10.1155/2015/104673.
[7]   XU J, WANG L, GUAN J, et al Coupled effect of strain rate and solvent on dynamic mechanical behaviors of separators in lithium-ion batteries[J]. Materials and Design, 2016, 95 (1): 319- 328
[8]   PEABODY C, ARNOLD C B The role of mechanically induced separator creep in lithium-ion battery capacity fade[J]. Journal of Power Sources, 2011, 196 (19): 8147- 8153
doi: 10.1016/j.jpowsour.2011.05.023
[9]   KALNAUS S, KUMAR A, WANG Y, et al Strain distribution and failure mode of polymer separators for Li-ion batteries under biaxial loading[J]. Journal of Power Sources, 2017, 378 (5): 139- 145
[10]   ZHANG X, SAHRAEI E, WANG K Deformation and failure characteristics of four types of lithium-ion battery separators[J]. Journal of Power Sources, 2016, 327 (7): 693- 701
[11]   KALNAUS S, WANG Y, TURNER J A Mechanical behavior and failure mechanisms of Li-ion battery separators[J]. Journal of Power Sources, 2017, 348 (3): 255- 263
[12]   WANG L, YIN S, YU Z, et al Unlocking the significant role of shell material for lithium-ion battery safety[J]. Materials and Design, 2018, 160 (10): 601- 610
[13]   ZHANG X, WIERZBICKI T Characterization of plasticity and fracture of shell casing of lithium-ion cylindrical battery[J]. Journal of Power Sources, 2015, 280 (1): 47- 56
[14]   SAHRAEI E, KAHN M, MEIER J, et al Modelling of cracks developed in lithium-ion cells under mechanical loading[J]. RSC Advances, 2015, 98 (5): 80369- 80380
[15]   XU J, LIU B, WANG L, et al Dynamic mechanical integrity of cylindrical lithium-ion battery cell upon crushing[J]. Engineering Failure Analysis, 2015, 53 (3): 97- 110
[16]   WANG L, YIN S, XU J A detailed computational model for cylindrical lithium-ion batteries under mechanical loading: from cell deformation to short-circuit onset[J]. Journal of Power Sources, 2018, 413 (12): 284- 292
[17]   LIU B, ZHAO H, YU H, et al Multiphysics computational framework for cylindrical lithium-ion batteries under mechanical abusive loading[J]. Electrochimica Acta, 2017, 256 (10): 172- 184
[18]   YUAN C, GAO X, WONG H K, et al A multiphysics computational framework for cylindrical battery behavior upon mechanical loading based on LS-DYNA[J]. Journal of the Electrochemical Society, 2019, 166 (6): 1160- 1169
doi: 10.1149/2.1071906jes
[19]   LIU B, JIA Y K, LI J, et al Safety issues caused by internal short circuits in lithium-ion batteries[J]. Journal of Materials Chemistry A, 2018, 43 (6): 21475- 21484
[20]   GAO W K, ZHENG Y, OUYANG M, et al Micro-short circuit diagnosis for series-connected lithium-ion battery packs using mean-difference model[J]. IEEE Transactions on Industrial Electronics, 2018, 66 (3): 2132- 2142
[1] Kai DU,Guo-rong ZHU,Jiang-hua LU,Mu-ye PANG. Metal object detection method in wireless electric vehicle charging system[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 56-62.
[2] Fei JU,Wei-chao ZHUANG,Liang-mo WANG,Jing-xing LIU,Qun WANG. Velocity planning strategy for economic cruise of hybrid electric vehicles[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1538-1547.
[3] Jia-jia WANG,Ying-feng CAI,Long CHEN,Shao-hua WANG,De-hua SHI. Coordinated control of hybrid electric vehicle based on extended state observer estimation[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1225-1233.
[4] Shuai-lin WANG,Lei SHENG,Li-na QI,Yi-dong FANG,Kang LI,Lin SU. Experimental investigation on thermophysical parameters of large-format pouch lithium-ion battery[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1986-1992.
[5] Ke-bing LEI,Zi-qiang CHEN. Estimation of state of charge of battery based on improved multi-innovation extended Kalman filter[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1978-1985.
[6] Jia-ming WU,Zi-qiang CHEN. Fault diagnosis of internal short circuit of lithium battery pack in variable low temperature environment[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1433-1439.
[7] Dong-dong JIANG,Dao-fei LI,Xiao-li YU. Model predictive control energy management based ondriver demand torque prediction[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1325-1334.
[8] Xia SHANG,Mei-jia WANG,Liu-xiao XU,Li-hui ZHANG. Configuration optimization of electric vehicle charging facilities in urban areas[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1210-1217.
[9] Hang-jian WENG,Xiao-juan DANG,Xiao-jing ZHANG. Energy absorption properties of tandem honeycomb with dislocated assembly[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2329-2335.
[10] Han-qing ZHUGE,Xu XIE,Yan-hua LIAO,Zhan-zhan TANG. Effect of transverse earthquake action on development of seismic damage of steel arch bridges[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 702-712.
[11] Tian-zhong HU,Jian-bo YU. Life prediction of lithium-ion batteries based on multiscale decomposition and deep learning[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1852-1864.
[12] FANG Zhao, LI Ai-qun, LI Wan-run, SHEN Sheng. Verification on multi-scale finite element of wind-induced fatigue of steel structures[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(6): 1131-1139.
[13] CHU Liang, LI Tian-jiao, SUN Cheng-wei. Research on adaptive cruise control strategy for electric vehicle based on optimization of regenerative braking[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(8): 1596-1602.
[14] QIAN Cheng, SHEN Guo-hui, GUO Yong, XING Yue-long. Influence of semi-rigid connections on wind-induced responses of transmission towers[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(6): 1082-1089.
[15] SUN Yue, JIA Xin, TANG Chun-sen. Pick-up position detection for WPT-EV based on three-coil synthesis algorithm[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(5): 984-991.