Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)  2018, Vol. 52 Issue (6): 1131-1139    DOI: 10.3785/j.issn.1008-973X.2018.06.012
Civil and Traffic Engineering     
Verification on multi-scale finite element of wind-induced fatigue of steel structures
FANG Zhao1, LI Ai-qun1,2, LI Wan-run1,3, SHEN Sheng1
1. School of Civil Engineering, Southeast University, Nanjing 210096, China;
2. Beijing Advanced Innovation Center for Future Urban Design, Beijing University of Civil Engineering and Architecture, Beijing 100044, China;
3. Institution of Earthquake Protection and Disaster Mitigation, Lanzhou University of Technology, Lanzhou 730050, China
Download:   PDF(3061KB) HTML
Export: BibTeX | EndNote (RIS)      


A two-layer frame structure was selected, and multi-scale finite element models were established by the constraint equation method and the sub-model method respectively, in order to study the multi-scale finite element modeling technology of steel structures under wind and to verify its rationality. Wind load static analysis, dynamic time history analysis and wind-induced fatigue analysis were performed; the obtained results were compared with those of single-scale models; the characteristics of those multi-scale finite element model were studied. Based on these, the selection of local micro scale model size was studied. Results show that in static analysis, dynamic time history analysis and fatigue analysis, the results of multi-scale models are in good agreement with those of single-scale models and the accuracy can meet the engineering demand. The sub-model method is more accurate than the constraint equation method, but is more sensitive to the local model size. For those steel frame structures with similar beam and column size to this structure, the distance between the boundary and the horizontal axis of the research location is recommended to be 0.05 m when the constraint equation method is used, while to be 0.1 m when the sub-model method is used.

Received: 23 February 2017      Published: 20 June 2018
CLC:  TU973  
Cite this article:

FANG Zhao, LI Ai-qun, LI Wan-run, SHEN Sheng. Verification on multi-scale finite element of wind-induced fatigue of steel structures. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(6): 1131-1139.

URL:     OR


为了研究钢结构风致疲劳分析中的多尺度有限元建模技术并验证其合理性,选择某二层框架结构,分别采用约束方程法和子模型法建立多尺度有限元模型,进行风荷载静力分析、动力时程分析及风致疲劳分析,并将计算结果与单一尺度模型进行比较,研究各多尺度有限元模型的特点,在此基础上研究局部细观尺度模型区域大小的选择.结果表明:在静力分析、动力时程分析及疲劳分析中,多尺度模型的计算结果与单一尺度模型吻合较好,精度可满足工程需要;子模型法相对约束方程法的精度更高,但更易受局部模型区域大小的影响.针对与本工程梁柱尺寸相似的钢框架结构,建议当采用约束方程法时,边界离研究部位横向轴线的距离选为0.05 m,而当采用子模型法时选为0.10 m.

[1] COLELLA F, REIN G, CARVEL R, et al. Analysis of the ventilation systems in the Dartford tunnels using a multi-scale modelling approach[J]. Tunnelling and Underground Space Technology, 2010, 25(4):423-432.
[2] LI Z X, ZHOU T Q, CHAN T H T, et al. Multi-scale numerical analysis on dynamic response and local damage in long-span bridges[J]. Engineering Structures, 2007, 29(7):1507-1524.
[3] KADOWAKI H, LIU W K. Bridging multi-scale method for localization problems[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(30):3267-3302.
[4] CAO Y, WANG P, JIN X, et al. Tunnel structureanalysis using the multi-scale modeling method[J]. Tunnelling and Underground Space Technology, 2012, 28:124-134.
[5] 丁幼亮,李爱群,缪长青,等.大跨桥梁结构损伤诊断与安全评估的多尺度有限元模拟研究[J].地震工程与工程振动,2006,26(2):66-72. DING You-liang, LI A-iqun, MIAO Chang-qing, et al. Multi-level finite element modeling of long-span bridges for structural damage diagnosis and safety evaluation[J]. Earthquake Engineering and Engineering Vibration, 2006, 26(2):66-72.
[6] 程小卫,李易,陆新征,等.基于多尺度模型的RC框架撞击倒塌响应数值分析[J].振动与冲击,2016,35(5):82-88. CHENG Xiao-wei, LI Yi, LU Xin-zheng, et al. Numerical analysis for collapse response of a RC frame subjected to impact loading based on multi-scale model[J]. Journal of Vibration and Shock, 2016, 35(5):82-88.
[7] 陆新征,林旭川,叶列平.多尺度有限元建模方法及其应用[J].土木工程与管理学报,2008,25(4):76-80. LU xin-zheng, LIN Xu-chuan, YE lie-ping. Multi-scale finite element modeling method and its application[J]. Journal of Civil Engineering and Management, 2008,25(4):76-80.
[8] PANASENKO G P. Multi-scale modelling for structures and composites[M]. Dordrecht:Springer, 2005:1-19.
[9] RAFⅡTABAR H, HUA L, CROSS M. A multi-scale atomistic-continuum modelling of crack propagation in a two-dimensional macroscopic plate[J]. Journal of Physics Condensed Matter, 1998, 40(10):2375.
[10] REPETTO M P, SOLARI G. Wind-induced fatigue collapse of real slender structures[J]. Engineering Structures, 2010, 32(12):3888-3898.
[11] REPETTO M P, SOLARI G. Wind-induced fatigue of structures under neutral and non-neutral atmospheric conditions[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2007, 95(9):1364-1383.
[12] JIA J. Investigations of a practical wind-induced fatigue calculation based on nonlinear time domain dynamicanalysis and a full wind-directional scatter diagram[J]. Ships & Offshore Structures, 2014, 9(3):272-296.
[13] DONG W, MOAN T, GAO Z. Fatigue reliability analysis of the jacket support structure for offshore wind turbine considering the effect of corrosion and inspection[J]. Reliability Engineering & System Safety, 2012, 106(106):11-27.
[14] DONG W, MOAN T, GAO Z. Long-term fatigueanalysis of multi-planar tubular joints for jacket-type offshore wind turbine in time domain[J]. Engineering Structures, 2011, 33(6):2002-2014.
[15] DONG W, XING Y, MOAN T, et al. Time domain-based gear contact fatigue analysis of a wind turbine drivetrain under dynamic conditions[J]. International Journal of Fatigue, 2013, 48(1):133-146.
[16] FANG Z, LI A, LI W, et al. Wind-induced fatigueanalysis of high-rise steel structures using equivalent structural stress method[J]. Applied Sciences, 2017,7(1):71.
[17] 方钊,李爱群,李万润,等. 高层钢框架支撑结构多尺度风致疲劳分析方法[J]. 东南大学学报:自然科学版,2017,47(1):137-141. FANG Zhao, LI Ai-qun, LI Wan-run, et al; Multi-scale wind-induced fatigue analysis method of high-rise steel braced frame structure[J]. Journal of SoutheastUniversity:Natural Science Edition, 2017, 47(1):137-142.
[18] 王新敏.ANSYS工程结构数值分析[M].北京:人民交通出版社,2013:394-399.
[19] 徐芝纶.弹性力学(上册).北京:高等教育出版社,2006:23-25.
[20] 王勖成.有限单元法[M].北京:清华大学出版社,2003:56-61.
[21] 中华人民共和国建设部.中华人民共和国国家标准.建筑结构荷载规范(GB50009-2001),2002.
[22] 武岳,孙瑛,郑朝荣,孙晓颖.风工程与结构抗风设计[M].哈尔滨:哈尔滨工业大学出版社, 2014.
[23] HOBBACHER A. Recommendations for Fatigue Design of Welded Joints and Components[M]. Basel:Springer International Publishing, 2016.
[24] 张彦华.焊接结构疲劳分析[M].北京:化学工业出版社,2013:107-117.
[25] 崔闯,卜一之,张清华,等.基于热点应力法的正交异性钢桥面板疲劳寿命评估[J].桥梁建设,2014,44(4):62-67. CUI Chuang, BU Yi-zhi, ZHANG Qing-hua, et al. Fatigue life assessment of orthotropic steel deck plate based on hot spot stress method[J]. Bridge Construction, 2014, 44(4):62-67.

[1] LOU Wen-juan, LIANG Hong-chao, BIAN Rong. Apply member loads to calculate wind load shape coefficient of angle-made-transmission tower[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(9): 1631-1637.
[2] GONG Ling-Li, JIN Na-Guo, HE Xiao-Yong, JIN Xian-Yu. New method of mix design for selfcompacting concrete
based on aggregate information