|
|
Estimation of state of charge of battery based on improved multi-innovation extended Kalman filter |
Ke-bing LEI(),Zi-qiang CHEN*() |
State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China |
|
|
Abstract An improved multi-innovation extended Kalman filter was proposed based on the forgetting factor in order to improve the accuracy of SOC estimation. Dual-polarization equivalent circuit model of lithium-ion battery was established, and open-circuit voltage testing was conducted. Recursive least squares method was used to realize online battery model parameter identification. FMIEKF was proposed for SOC estimation based on the fusion of multi-innovation identification theory and Kalman filtering. A forgetting factor was introduced to weaken the historical data correction weight and solve the problem of data oversaturation. The method was verified through experiments and hardware-in-the-loop. The experimental results show that FMIEKF has higher accuracy and convergence. The maximum estimation error was 0.948%, the average error was 0.214%, and the FMIEKF converged within 20 seconds under different initial values of SOC. The method can be applied to the actual battery management system.
|
Received: 26 November 2020
Published: 27 October 2021
|
|
Fund: 国家自然科学基金资助项目(51677119) |
Corresponding Authors:
Zi-qiang CHEN
E-mail: Kebing_Lei@sjtu.edu.cn;chenziqiang@sjtu.edu.cn
|
基于改进多新息扩展卡尔曼滤波的电池SOC估计
为了提高SOC估计精度,提出基于遗忘因子改进多新息扩展卡尔曼滤波(FMIEKF)方法. 建立锂离子电池的双极化等效电路模型,开展开路电压测试. 通过递归最小二乘法,实现电池模型参数在线辨识. 提出FMIEKF进行SOC估计,该方法在融合多新息辨识理论和卡尔曼滤波基础上,引入遗忘因子削弱历史数据修正权重,解决数据过饱和问题. 通过实验和硬件在环进行验证. 结果表明,FMIEKF具有较高的准确性和收敛性,最大估计误差为0.948%,平均误差为0.214%,在不同SOC初值下20 s内收敛,可以适用于实际的电池管理系统中.
关键词:
锂离子电池,
多新息辨识,
卡尔曼滤波,
SOC估计,
硬件在环
|
|
[1] |
GRUOSSO G, GAJANI G, RUIZ F, et al A virtual sensor for electric vehicles’ state of charge estimation[J]. Electronics, 2020, 9 (2): 278
doi: 10.3390/electronics9020278
|
|
|
[2] |
LI Y, CHATTOPADHYAY P, XIONG S, et al Dynamic data-driven and model-based recursive analysis for estimation of battery state-of-charge[J]. Applied Energy, 2016, 184 (12): 266- 275
|
|
|
[3] |
周诗尧, 陈自强, 郑昌文, 等 全海深深潜器所用动力锂离子电池电气特性[J]. 上海交通大学学报, 2019, 53 (1): 49- 54 ZHOU Shi-yao, CHEN Zi-qiang, ZHENG Chang-wen, et al Electrical characteristics of power lithium-ion batteries used in all-sea deep submersibles[J]. Journal of Shanghai Jiaotong University, 2019, 53 (1): 49- 54
|
|
|
[4] |
韩雪冰. 车用锂离子电池机理模型与状态估计研究[D]. 北京: 清华大学, 2014. HAN Xue-bing. Research on mechanism model and state estimation of lithium-ion batteries for vehicles [D]. Beijing: Tsinghua University, 2014.
|
|
|
[5] |
ZHENG C, CHEN Z, HUANG D Fault diagnosis of voltage sensor and current sensor for lithium-ion battery pack using hybrid system modeling and unscented particle filter[J]. Energy, 2020, 191 (1): 116504
|
|
|
[6] |
刘征宇, 杨俊斌, 张庆, 等 基于QPSO-BP神经网络的锂电池SOC预测[J]. 电子测量与仪器学报, 2013, 27 (3): 44- 48 LIU Zheng-yu, YANG Jun-bin, ZHANG Qing, et al Lithium battery SOC prediction based on QPSO-BP neural network[J]. Journal of Electronic Measurement and Instrument, 2013, 27 (3): 44- 48
|
|
|
[7] |
KLASS V, BEHM M, LINDBERGH G Capturing lithium-ion battery dynamics with support vector machine-based battery model[J]. Journal of Power Sources, 2015, 298 (8): 92- 101
|
|
|
[8] |
PING S, OUYANG M, LU L, et al The co-estimation of state of charge, state of health, and state of function for lithium-ion batteries in electric vehicles[J]. IEEE Transactions on Vehicular Technology, 2018, 67 (1): 92- 103
doi: 10.1109/TVT.2017.2751613
|
|
|
[9] |
XIONG R, GONG X, MI C C, et al A robust state-of-charge estimator for multiple types of lithium-ion batteries using adaptive extended Kalman filter[J]. Journal of Power Sources, 2013, 243 (6): 805- 816
|
|
|
[10] |
DUAN J, WANG P, MA W, et al State of charge estimation of lithium battery based on improved correntropy extended Kalman filter[J]. Energies, 2020, 13 (16): 4197
doi: 10.3390/en13164197
|
|
|
[11] |
WASSILIADIS N, ADERMANN J, FRERICKS A, et al Revisiting the dual extended Kalman filter for battery state-of-charge and state-of-health estimation: a use-case life cycle analysis[J]. The Journal of Energy Storage, 2018, 19 (10): 73- 87
|
|
|
[12] |
LI W, YANG Y, WANG D, et al The multi-innovation extended Kalman filter algorithm for battery SOC estimation[J]. Ionics, 2020, 26 (10): 1- 12
doi: 10.1007/s11581-020-03716-0
|
|
|
[13] |
吴佳铭, 陈自强 可变低温环境锂电池组内部短路故障诊断[J]. 浙江大学学报:工学版, 2020, 54 (7): 1433- 1439 WU Jia-ming, CHEN Zi-qiang Fault diagnosis of internal short circuit of lithium battery pack in variable low temperature environment[J]. Journal of Zhejiang University: Engineering Science Edition, 2020, 54 (7): 1433- 1439
|
|
|
[14] |
葛云龙, 陈自强, 郑昌文 UTSTF锂离子电池时变参数估计与故障诊断[J]. 浙江大学学报: 工学版, 2018, 52 (6): 1223- 1230 GE Yun-long, CHEN Zi-qiang, ZHENG Chang-wen Time-varying parameter estimation and fault diagnosis of UTSTF lithium-ion battery[J]. Journal of Zhejiang University: Engineering Science Edition, 2018, 52 (6): 1223- 1230
|
|
|
[15] |
HUANG D, CHEN Z, ZHENG C, et al A model-based state-of-charge estimation method for series-connected lithium-ion battery pack considering fast-varying cell temperature[J]. Energy, 2019, 185 (C): 847- 861
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|