Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (10): 1978-1985    DOI: 10.3785/j.issn.1008-973X.2021.10.020
    
Estimation of state of charge of battery based on improved multi-innovation extended Kalman filter
Ke-bing LEI(),Zi-qiang CHEN*()
State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Download: HTML     PDF(3657KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An improved multi-innovation extended Kalman filter was proposed based on the forgetting factor in order to improve the accuracy of SOC estimation. Dual-polarization equivalent circuit model of lithium-ion battery was established, and open-circuit voltage testing was conducted. Recursive least squares method was used to realize online battery model parameter identification. FMIEKF was proposed for SOC estimation based on the fusion of multi-innovation identification theory and Kalman filtering. A forgetting factor was introduced to weaken the historical data correction weight and solve the problem of data oversaturation. The method was verified through experiments and hardware-in-the-loop. The experimental results show that FMIEKF has higher accuracy and convergence. The maximum estimation error was 0.948%, the average error was 0.214%, and the FMIEKF converged within 20 seconds under different initial values of SOC. The method can be applied to the actual battery management system.



Key wordslithium-ion battery      multi-innovation recognition      Kalman filter      estimation of SOC      hardware in loop     
Received: 26 November 2020      Published: 27 October 2021
CLC:  TM 912  
Fund:  国家自然科学基金资助项目(51677119)
Corresponding Authors: Zi-qiang CHEN     E-mail: Kebing_Lei@sjtu.edu.cn;chenziqiang@sjtu.edu.cn
Cite this article:

Ke-bing LEI,Zi-qiang CHEN. Estimation of state of charge of battery based on improved multi-innovation extended Kalman filter. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1978-1985.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.10.020     OR     https://www.zjujournals.com/eng/Y2021/V55/I10/1978


基于改进多新息扩展卡尔曼滤波的电池SOC估计

为了提高SOC估计精度,提出基于遗忘因子改进多新息扩展卡尔曼滤波(FMIEKF)方法. 建立锂离子电池的双极化等效电路模型,开展开路电压测试. 通过递归最小二乘法,实现电池模型参数在线辨识. 提出FMIEKF进行SOC估计,该方法在融合多新息辨识理论和卡尔曼滤波基础上,引入遗忘因子削弱历史数据修正权重,解决数据过饱和问题. 通过实验和硬件在环进行验证. 结果表明,FMIEKF具有较高的准确性和收敛性,最大估计误差为0.948%,平均误差为0.214%,在不同SOC初值下20 s内收敛,可以适用于实际的电池管理系统中.


关键词: 锂离子电池,  多新息辨识,  卡尔曼滤波,  SOC估计,  硬件在环 
Fig.1 Dual polarization equivalent circuit model
阶数 RSS/10?5 R2
4阶 34.09 0.999 0
5阶 10.31 0.999 3
6阶 7.042 0.999 6
7阶 6.938 0.999 8
Tab.1 Statistics of different polynomial fitting results
Fig.2 Fitting of Uocv-SOC characteristic curve
R0 /mΩ R1 /mΩ R2 /mΩ C1 /F C2 /F
3.89 7.548 0.453 3929 1101
Tab.2 Results of HPPC parameter identification at 100% SOC
Fig.3 Schematic diagram of sliding data window
Fig.4 FFRLS-FMIEKF joint SOC estimation process
Fig.5 Structure of battery charging and discharging experimental device
参数 数值
电池型号 聚合物锂电池1265132
外形尺寸 厚8 mm,宽92 mm,高112 mm
净重 200 g
额定容量 10 A·h
标准电压 3.7 V
工作电压 3.0~4.2 V
持续工作电流 ≤25 A
充电电流 ≤5 A
Tab.3 Parameter table of experimental battery
Fig.6 FFRLS parameter identification results
Fig.7 Comparison of SOC estimation accuracy
估计算法 ESOC /%
最大误差 平均误差 标准差
EKF 0.985 0.267 0.405
AEKF 0.967 0.249 0.328
MIEKF 0.962 0.233 0.309
FMIEKF 0.948 0.214 0.287
Tab.4 SOC estimation error statistics of different algorithms
Fig.8 Convergence comparison of FMIEKF
Fig.9 SOC estimation results for different innovation lengths
Fig.10 SOC estimation results for different forgetting factors
Fig.11 Hardware in loop verification platform
Fig.12 Comparison of HIL and experimental result
%
指标 最大误差 平均误差 均方误差
实验值 0.948 0.214 0.287
HIL 1.903 0.243 0.342
Tab.5 HIL result statistics of improved MIEKF
[1]   GRUOSSO G, GAJANI G, RUIZ F, et al A virtual sensor for electric vehicles’ state of charge estimation[J]. Electronics, 2020, 9 (2): 278
doi: 10.3390/electronics9020278
[2]   LI Y, CHATTOPADHYAY P, XIONG S, et al Dynamic data-driven and model-based recursive analysis for estimation of battery state-of-charge[J]. Applied Energy, 2016, 184 (12): 266- 275
[3]   周诗尧, 陈自强, 郑昌文, 等 全海深深潜器所用动力锂离子电池电气特性[J]. 上海交通大学学报, 2019, 53 (1): 49- 54
ZHOU Shi-yao, CHEN Zi-qiang, ZHENG Chang-wen, et al Electrical characteristics of power lithium-ion batteries used in all-sea deep submersibles[J]. Journal of Shanghai Jiaotong University, 2019, 53 (1): 49- 54
[4]   韩雪冰. 车用锂离子电池机理模型与状态估计研究[D]. 北京: 清华大学, 2014.
HAN Xue-bing. Research on mechanism model and state estimation of lithium-ion batteries for vehicles [D]. Beijing: Tsinghua University, 2014.
[5]   ZHENG C, CHEN Z, HUANG D Fault diagnosis of voltage sensor and current sensor for lithium-ion battery pack using hybrid system modeling and unscented particle filter[J]. Energy, 2020, 191 (1): 116504
[6]   刘征宇, 杨俊斌, 张庆, 等 基于QPSO-BP神经网络的锂电池SOC预测[J]. 电子测量与仪器学报, 2013, 27 (3): 44- 48
LIU Zheng-yu, YANG Jun-bin, ZHANG Qing, et al Lithium battery SOC prediction based on QPSO-BP neural network[J]. Journal of Electronic Measurement and Instrument, 2013, 27 (3): 44- 48
[7]   KLASS V, BEHM M, LINDBERGH G Capturing lithium-ion battery dynamics with support vector machine-based battery model[J]. Journal of Power Sources, 2015, 298 (8): 92- 101
[8]   PING S, OUYANG M, LU L, et al The co-estimation of state of charge, state of health, and state of function for lithium-ion batteries in electric vehicles[J]. IEEE Transactions on Vehicular Technology, 2018, 67 (1): 92- 103
doi: 10.1109/TVT.2017.2751613
[9]   XIONG R, GONG X, MI C C, et al A robust state-of-charge estimator for multiple types of lithium-ion batteries using adaptive extended Kalman filter[J]. Journal of Power Sources, 2013, 243 (6): 805- 816
[10]   DUAN J, WANG P, MA W, et al State of charge estimation of lithium battery based on improved correntropy extended Kalman filter[J]. Energies, 2020, 13 (16): 4197
doi: 10.3390/en13164197
[11]   WASSILIADIS N, ADERMANN J, FRERICKS A, et al Revisiting the dual extended Kalman filter for battery state-of-charge and state-of-health estimation: a use-case life cycle analysis[J]. The Journal of Energy Storage, 2018, 19 (10): 73- 87
[12]   LI W, YANG Y, WANG D, et al The multi-innovation extended Kalman filter algorithm for battery SOC estimation[J]. Ionics, 2020, 26 (10): 1- 12
doi: 10.1007/s11581-020-03716-0
[13]   吴佳铭, 陈自强 可变低温环境锂电池组内部短路故障诊断[J]. 浙江大学学报:工学版, 2020, 54 (7): 1433- 1439
WU Jia-ming, CHEN Zi-qiang Fault diagnosis of internal short circuit of lithium battery pack in variable low temperature environment[J]. Journal of Zhejiang University: Engineering Science Edition, 2020, 54 (7): 1433- 1439
[14]   葛云龙, 陈自强, 郑昌文 UTSTF锂离子电池时变参数估计与故障诊断[J]. 浙江大学学报: 工学版, 2018, 52 (6): 1223- 1230
GE Yun-long, CHEN Zi-qiang, ZHENG Chang-wen Time-varying parameter estimation and fault diagnosis of UTSTF lithium-ion battery[J]. Journal of Zhejiang University: Engineering Science Edition, 2018, 52 (6): 1223- 1230
[15]   HUANG D, CHEN Z, ZHENG C, et al A model-based state-of-charge estimation method for series-connected lithium-ion battery pack considering fast-varying cell temperature[J]. Energy, 2019, 185 (C): 847- 861
[1] Si-peng WANG,Chang-ping DU,Guang-hua SONG,Yao ZHENG. Indoor positioning method of UAV based on improved MSCKF algorithm[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 711-717.
[2] Cheng-qian GUO,Gang MA,Jiang-zhou MEI,Gui-ke ZHANG,Hong-bi LI,Wei ZHOU. Exterior deformation reconstruction of rockfill dam based on InSAR and multi-source data fusion[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(2): 347-355.
[3] Chuan-hui WU,Jia LIAO,Shi-yong XIONG,Ying-jie NIU,Bo ZHOU. Contour matching method of groove track based on laser sensor[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1607-1614.
[4] Xue XIA,Zhen ZHAO,Jin-jie ZHANG,Liang TANG. Mechanical integrity of cylindrical automotive lithium-ion batteries and modules[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2134-2141.
[5] Shuai-lin WANG,Lei SHENG,Li-na QI,Yi-dong FANG,Kang LI,Lin SU. Experimental investigation on thermophysical parameters of large-format pouch lithium-ion battery[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1986-1992.
[6] Jia-ming WU,Zi-qiang CHEN. Fault diagnosis of internal short circuit of lithium battery pack in variable low temperature environment[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1433-1439.
[7] Tian-zhong HU,Jian-bo YU. Life prediction of lithium-ion batteries based on multiscale decomposition and deep learning[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1852-1864.
[8] WANG Ri-jun, ZHAO Chang-jun, BAI Yue, ZENG Zhi-qiang, DU Wen-hua, DUAN Neng-quan. Faults detection and self-reconfiguration for execution units of Hex-Rotor unmanned aerial vehicle based on multiple fault classification[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(7): 1406-1414.
[9] LIU Jing-ming, HUANG Ping-jie, HOU Di-bo, ZHANG Guang-xin, ZHANG Hong-jian. Dynamic pollutant concentration correction method for river sudden pollution[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(12): 2459-2465.
[10] CUI Ren-jie, MENG Tao, HUO Jun-hai, JIN Zhong-he. On-orbit calibration technique for residual magnetism fluctuation of micro-satellite[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(12): 2444-2450.
[11] YE Xiao-wei, LIU Tan, DONG Chuan-zhi, CHEN Bin. Structural damage detection based on Kalman filter and neutral axis location[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(10): 2012-2018.
[12] SONG Kai chen, ZENG Yao, YE Ling yun . Vortex signal processing method based on multi-sensor information fusion[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(7): 1307-1312.
[13] LIU Gang, JIN Li qiang, WANG Yi. Vehicle stability control system based on active disturbance-rejection control strategy[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(12): 2289-2296.
[14] MO Yuan fu, YU De xin, SONG Jun, GUO Ya juan. Beacon message generating strategy based on channel load preset threshold in VANET environment[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(1): 21-26.
[15] ZHU Guang-ming, JIANG Rong-xin, ZHOU Fan, TIAN Xiang, CHEN Yao-wu. Robust Kalman filtering algorithm with estimation of measurement biases[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(7): 1343-1349.