Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)  2018, Vol. 52 Issue (7): 1406-1414    DOI: 10.3785/j.issn.1008-973X.2018.07.022
Aeronautics and Astronautics Technology     
Faults detection and self-reconfiguration for execution units of Hex-Rotor unmanned aerial vehicle based on multiple fault classification
WANG Ri-jun1, ZHAO Chang-jun2, BAI Yue3, ZENG Zhi-qiang1, DU Wen-hua1, DUAN Neng-quan1
1. School of Mechanical Engineering, North University of China, Taiyuan 030051, China;
2. China Electronic Product Reliability and Environmental Testing Research Institute, Guangzhou 510000, China;
3. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
Download:   PDF(1954KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The safety and reliability of the Hex-Rotor UAV were improved in order to detect the fault of the execution units of Hex-Rotor unmanned aerial vehicle (UAV) quickly and accurately. The faults detection and self-reconfiguration for execution units of Hex-Rotor UAV was proposed based on multiple fault classification. The lift model of the execution units was established based on the classification of the fault of the execution units. The fault observer group based on the extended Kalman filter (EKF) algorithm was constructed to achieve fault detection and isolation. Then a self-reconfigurable control algorithm based on multiple fault classification was designed by using the output signal of the fault observer group. The effectiveness of the proposed algorithm was verified by theoretical analysis, numerical simulation and actual flight. Results show that the algorithm can complete fault detection and isolation quickly and accurately, and ensure the stability of the attitude control of the Hex-Rotor UAV under fault condition.



Received: 07 January 2018      Published: 26 June 2018
CLC:  V279  
Cite this article:

WANG Ri-jun, ZHAO Chang-jun, BAI Yue, ZENG Zhi-qiang, DU Wen-hua, DUAN Neng-quan. Faults detection and self-reconfiguration for execution units of Hex-Rotor unmanned aerial vehicle based on multiple fault classification. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(7): 1406-1414.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2018.07.022     OR     http://www.zjujournals.com/eng/Y2018/V52/I7/1406


基于多故障分类的Hex-Rotor无人飞行器的执行单元故障检测与自重构

为了实现对Hex-Rotor无人飞行器执行单元故障的快速准确检测,提高飞行器的安全性和可靠性,提出基于多故障分类的执行单元故障检测与自重构算法.在对执行单元故障进行分类的基础上,建立执行单元升力故障模型,构建基于扩展卡尔曼滤波算法的故障观测器组,实现故障的检测与隔离.利用故障观测器的输出信号,对不同故障进行相应的自重构,设计基于多故障分类的自重构控制算法.通过理论分析、数值仿真和实际飞行,验证了提出算法的有效性.结果表明,利用该算法能够快速、准确地完成故障检测与隔离,在故障条件下保证飞行器姿态控制的稳定性.

[1] AVRAM R C, ZHANG X, MUSE J. Quadrotor actuator fault diagnosis and accommodation using nonlinear adaptive estimators[J]. IEEE Transactions on Control Systems Technology, 2017, 25(6):2219-2226.
[2] QI X, QI J, THEILLIOL D, et al. A review on fault diagnosis and fault tolerant control methods for single-rotor aerial vehicles[J]. Journal of Intelligent and Robotic Systems, 2014, 73(1-4):535-555.
[3] XU D, WHIDBORNE J F, COOKE A. Fault tolerant control of a quadrotor using 1 adaptive control[J]. International Journal of Intelligent Unmanned Systems, 2016, 4(1):43-66.
[4] PARK P, KHADILKAR H, BALAKRISHNAN H, et al. High confidence networked control for next generation air transportation systems[J]. IEEE Transactions on Automatic Control, 2014, 59(12):3357-3372.
[5] MERHEB A R, NOURA H, BATEMAN F. Design of passive fault-tolerant controllers of a quadrotor based on sliding mode theory[J]. International Journal of Applied Mathematics and Computer Science, 2015, 25(3):561-576.
[6] ZEGHLACHE S, SAIGAA D, KARA K. Fault tolerant control based on neural network interval type-2 fuzzy sliding mode controller for octorotor UAV[J]. Frontiers of Computer Science in China, 2016, 10(4):657-672.
[7] SØRENSEN M E N, HANSEN S, BREIVIK M, et al. Performance comparison of controllers with Fault-Dependent Control Allocation for UAVs[J]. Journal of Intelligent and Robotic Systems, 2017, 87(1):187-207.
[8] RANJBARAN M, KHORASANI K. Generalized fault recovery of an under-actuated quadrotor aerial vehicle[C]//Proceedings of 2012 American Control Conference Montreal. Montreal:IEEE, 2012:2515-2520.
[9] SHARIFI F, MIRZAEI M, GORDON B W, et al. Fault tolerant control of a quadrotor UAV using sliding mode control[C]//Control and Fault-Tolerant Systems. Nice:IEEE, 2010:239-244.
[10] ZEGHLACHE S, KARA K, SAIGAA D. Fault tolerant control based on interval type-2 fuzzy sliding mode controller for coaxial trirotor aircraft[J]. ISA Transactions, 2015, 59(11):215-231.
[11] DU G X, QUAN Q, CAI K Y. Controllability analysis and degraded control for a class of hexacopters subject to rotor failures[J]. Journal of Intelligent and Robotic Systems, 2015, 78(1):143-157.
[12] ROTONDO D, NEJJARI F, PUIG V. Robust quasi-LPV model reference FTC of a quadrotor UAV subject to actuator faults[J]. International Journal of Applied Mathematics and Computer Science, 2015, 25(1):7-22.
[13] 王俭臣,齐晓慧,单甘霖.一类参数不确定非线性系统的故障检测与重构[J].系统工程与电子技术, 2015, 37(1):155-162. WANG Jian-chen, QI Xiao-hui, SHAN Gan-lin. Fault detection and reconstruction for a class of nonlinear systems with parametric uncertainties[J]. Systems Engineering and Electronics, 2015, 37(1):155-162.
[14] 刘晓东,钟麦英,柳海.基于EKF的无人机飞行控制系统故障检测[J].上海交通大学学报,2015, 49(6):884-888. LIU Xiao-dong, ZHONG Mai-ying, LIU Hai. EKF-based fault detection of unmanned aerial vehicle flight control system[J]. Journal of Shanghai Jiaotong University, 2015, 49(6):884-888.
[15] JIANG H, YU Y, DING X, et al. A fault tolerant control strategy for quadrotor UAVs based on trajectory linearization approach[C]//Proceedings of 2012 IEEE International Conference on Mechatronics and Automation. Chengdu:IEEE, 2012:1174-1179.
[16] BARGHANDAN S, BADAMCHIZADEH M A, JHAED-MOTLAGH M R. Improved adaptive fuzzy sliding mode controller for robust fault tolerant of a quadrotor[J]. International Journal of Control, Automation and Systems, 2017, 15(1):427-441.
[17] PENG L, ERIK V K, BIN Y. Actuator fault detection and diagnosis for quadrotors[C]//International Micro Air Vehicle Conference and Competition. Netherlands:Delft University of Technology, 2014:58-36.
[18] 宫勋,白越,赵常均,等. Hex-Rotor无人飞行器及其飞行控制系统设计[J]. 光学精密工程, 2012, 20(11):1995-2002. GONG Xun, BAI Yue, ZHAO Chang-jun, et al. Hex-rotor aircraft and its autonomous flight control system[J]. Optics and Precision Engineering, 2012, 20(11):1995-2002.
[19] 赵常均.Hex-Rotor无人飞行器执行单元的故障分析与飞行控制[D].北京:中国科学院大学,2015. ZHAO Chang-jun. Fault analysis of execution units and flight control for hex-rotor unmanned aerial vehicle[D]. Beijing:University of Chinese Academy of Sciences, 2015.
[20] 付梦印,邓志红,张继伟. Kalman滤波理论及其在导航系统中的应用[M].北京:科学出版社,2003:74-79.
[21] 赵常均,白越,宫勋,等.气动干扰下的Hex-Rotor无人飞行器控制器及其飞行实验[J].光学精密工程,2015,23(4):1088-1095. ZHAO Chang-jun, BAI Yue, GONG Xun, et al. Hex-rotor unmanned aerial vehicle controller and its flight experiment under aerodynamic disturbance[J]. Optics and Precision Engineering, 2015, 23(4):1088-1095.

No related articles found!