Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)  2018, Vol. 52 Issue (7): 1398-1405    DOI: 10.3785/j.issn.1008-973X.2018.07.021
Aeronautics and Astronautics Technology     
Improved Tau-H strategy for four-dimensional cooperative route planning of multi-UAVs
DING Qiang, TAO Wei-ming
School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China
Download:   PDF(1678KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An improved Tau-H strategy was proposed for route planning and optimization of multiple unmanned aerial vehicles (UAVs) flight cooperation to satisfy various constraints. The improved Tau-H strategy overcame the original shortcomings of common-used Tau-H motion strategy by introducing the correlative term of initial velocity into the motion formula, which was only applicable to problems with initial and ending velocity of zero. Then the strategy can be employed to plan four-dimensional (4D) motion of UAVs with nonzero initial and ending velocity to match the arrival time and velocity. Global trajectories were generated by using particle swarm optimization (PSO) algorithm to search the initial coupling coefficient of UAVs. Then the trajectories were constantly updated by solving the local planning problem by the rolling optimization method with double drive of sampling interval and collision detection based on the established communication topology among UAVs. Simulation results of several examples indicate that the improved Tau-H strategy based method can satisfy relevant application requirements for receiving the continuous 4D cooperative route planning and optimization of multi-UAVs with great flight capability and high flight safety.



Received: 21 November 2017      Published: 26 June 2018
CLC:  V249  
Cite this article:

DING Qiang, TAO Wei-ming. Improved Tau-H strategy for four-dimensional cooperative route planning of multi-UAVs. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(7): 1398-1405.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2018.07.021     OR     http://www.zjujournals.com/eng/Y2018/V52/I7/1398


多无人机协同四维航迹规划的改进的Tau-H策略

为了在满足多类约束条件的前提下进行多无人机(UAVs)协同飞行的航迹规划及优化,提出改进的Tau-H运动策略.在常用的Tau-H运动策略基础上,通过在运动间距表达式中引入初速度的相关项,克服了固有的仅能考虑始末速度为零的情况的缺陷,可以实现无人机始末非静止的到达时间和速度的四维运动匹配.利用粒子群算法(PSO)搜索各无人机的初始耦合系数,形成全局航迹预规划;建立各无人机间的通信拓扑,采用采样间隔与冲突判断双驱动的滚动优化方法,求解局部再规划问题,实现航迹不断更新.通过对算例的仿真表明,基于改进的Tau-H策略得到的航迹可飞性好,安全性高,能够满足连续型多无人机航迹规划及优化的应用需求.

[1] RADMANESH M, KUMAR M. Flight formation of UAVs in presence of moving obstacles using fast-dynamic mixed integer linear programming[J]. Aerospace Science and Technology, 2016, 50:149-160.
[2] 肖刘. 基于多智能体的多无人机编队算法[J]. 航空电子技术, 2014, 45(2):4-7. XIAO Liu. Multiple uav formation arithmetic based on multi-agent[J]. Avionics Technology, 2014, 45(2):4-7.
[3] TANG X M, HAN Y X. 4D trajectory estimation for air traffic control automation system based on hybrid system theory[J].Promet-Traffic and Transportation, 2012, 24(2):91-98.
[4] SUPATCHA C, DANIEL D, MARCEL M. A hybrid metaheuristic optimization algorithm for strategic planning of 4D aircraft trajectories at the continental scale[J]. Computational Intelligence Magazine, 2014, 9(4):46-61.
[5] WU P P, CAMPBELL D, MERZ T. Multi-objective four-dimensional vehicle motion planning in large dynamic environments[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cyberbetics, 2011, 41(3):621-634.
[6] 杨祖强. 生物启发的多无人机协同四维航迹规划方法研究[D].杭州:浙江大学,2016. YANG Zu-qiang. Bio-inspired 4D trajectory generation for multi-uav cooperation[D]. Hangzhou:Zhejiang University, 2016.
[7] MOON S, OH E, SHIM D H. An integral framework of task assignment and path planning for multiple unmanned aerial vehicles in dynamic environments[J]. Journal of Intelligent and Robotic Systems, 2013, 70(1-4):303-313.
[8] BARRIENTOS A, GUTIERREZ P, COLORADO J. Advanced uav trajectory generation:planning and guidance[M]//Aerial Vehicles.:in-tech, 2009.
[9] BERRY A J, HOWITT J, GU D W. A continuous local motion planning framework for unmanned vehicles in complex environments[J]. Journal of Intelligent and Robotic Systems, 2012, 66(4):477-494.
[10] LEE D N. A theory of visual control of braking based on information about time-to-collision[J]. Perception, 1976, 5(4):437-459.
[11] 冯建立,张宏杰.运动技能操作的知觉理论辨析-基于间接知觉和直接知觉理论[J].成都体育学院学报, 2013, 39(2):15-19. FENG Jian-li, ZHANG Hong-jie.Analysis on the perception theory of sports skill operation-based on indirect perception and direct perception theory[J]. Journal of Chengdu Sport University, 2013, 39(2):15-19.
[12] LEE D N, MARK N D, PATRICK R G. Visual control of velocity of approach by pigeons when landing[J].Journal of Experimental Biology, 1993, 180(1):85-104.
[13] LEE D N. General tau theory:evolution to date[J]. Perception, 2009, 38(6):837-858.
[14] SCHOGLER B, PEPPING G J, LEE D N. Tau-G guidance of transients in expressive musical performance[J]. Experimental Brain Research, 2008, 189(3):361-372.
[15] YANG Zhu-qiang, FANG Zhou, LI Ping. Bio-inspired collision-free 4D trajectory generation for uavs using tau strategy[J]. Journal of Bionic Engineering, 2016, 13(1):84-97.
[16] 张书涛, 张震, 钱晋武. 基于Tau理论的机器人抓取运动仿真轨迹规划[J].机械工程学报,2014, 50(13):42-51. ZHANG Shu-tao, ZHANG Zhen, QIAN Jin-wu. Bio inspired trajectory planning for robot catching movements based on the tau theory[J]. Journal of Mechanical Engineering, 2014, 50(13):42-51.
[17] ZHANG Z, ZHANG S T, XIE P, et al. Bioinspired 4D trajectory generation for a UAS rapid point-to-point movement[J]. Journal of Bionic Engineering, 2014, 11(1):72-81.
[18] ALEJO D, COBANO J A, HEREDIA G, et al. Particle swarm optimization for collision-free 4D planning in unmanned aerial vehicles[C]//International Conference on Unmanned Aircraft Systems. Piscataway:IEEE, 2013:298-307.
[19] ALEJO D, COBANO J A, HEREDIA G, et al. Collsion-free 4D trajectory planning in unmanned aerial vehicles for assembly and structure construction[J]. Journal of Intelligent and Systems, 2014, 73(1-4):783-795.

[1] HU Miao-miao, JING Zhong-liang, DONG Peng, ZHOU Gui-rong, ZHENG Zhi-ming. Variational Bayesian filtering based on Student-t distribution for SINS/GPS integrated navigation[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(8): 1482-1488.
[2] HOU Xin, LI Beng, HAN Bei, et al. Hierarchical hybrid control system of small unmanned helicopter[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2009, 43(5): 796-800.