1. Key Laboratory of Air-driven Equipment Technology of Zhejiang Province, Quzhou University, Quzhou 324000, China 2. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China
Aiming at the selection and optimization of temperature key points in thermal error modeling of different CNC machine tools, a new method was proposed to effectively reduce the temperature measurement points and improve the prediction accuracy of thermal error. The method could effectively classify and select temperature measuring points by establishing the correlation and difference between various temperature signal sequences. On the basis of system clustering, the correlation coefficients between variables and Euclidean distance matrix were weighted and fused to optimize the collinearity between measurement points. Then, grey correlation analysis was used to determine the degree of closeness between measuring points and thermal errors, and the optimal measuring points in various subsets were extracted. A thermal error prediction model based on support vector regression was constructed with the optimized measuring points as input. In order to determine the weight coefficient, the number of clusters and the parameters of support vector regression, the optimal prediction model was obtained by using genetic algorithm for parameter optimization. Finally, the proposed method was validated on several machine tools, and the verification and analysis results of three different machine tools were given. The root mean square error of predictions using the proposed method decreased by 24%, 71% and 62% compared with those using the original measurement points, respectively. The results showed that the proposed method can effectively improve the prediction accuracy of the thermal error model on different machine tools under the premise of greatly reducing the number of sensors. The proposed method has good versatility and the predictive performance of the method is stronger compared to other methods.
Xiao-lei DENG,Yu-shen CHEN,Cheng-zhi FANG,Da-sha MEN,Xiao-liang LIN,Shao-fei JIANG. Temperature measurement point selection method of multi-machine tool based on weighted fusion matrix system clustering. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1147-1156.
Fig.1Thermal state characteristics acquisition experiment of machine tool Ⅰ
传感器编号
传感器位置
T1、T2、T3、T4
主轴
T6
主轴箱正面
T11、T9、T14
主轴箱内部
T7、T10
主轴箱侧面
T5、T8
电机底座
T12、T13、T15
电机外壳
T16
外部环境
Tab.1Temperature sensor distribution of machine tool Ⅰ
Fig.2Sensor layout of machine tool Ⅰ
Fig.3Temperature rise-time curves for machine tool Ⅰ at 4 000 r/min
Fig.4Thermal error-time curve for machine tool Ⅰ at 4 000 r/min
Fig.5Partial curve of temperature rise-time for machine tool Ⅰ at 4 000 r/min
Fig.6Overall flow of measuring point optimization method
Fig.7Grey correlation degree of each temperature series
Fig.8Process of out genetic algorithm
Fig.9Clustering tree of improved system clustering method
Fig.10Comparison of prediction results before and after optimization of measuring points of machine Ⅰ
Fig.11Comparison diagram of residual prediction of machine tool Ⅰ thermal error model under different measuring point optimization schemes
评估指标
RMSE/μm
MAE/μm
方案①
1.014
0.906
方案②
0.770
0.626
方案③
1.119
1.042
方案④
0.987
0.895
方案⑤
1.256
1.101
Tab.2Evaluation of thermal error model for machine tool Ⅰ under different measuring point optimization schemes
Fig.12Thermal characteristics acquisition of machine tool Ⅱ, Ⅲ
传感器编号
传感器位置
T1、T2
主轴伸出端底部
T3、T4
主轴伸出端侧部
T5
法兰盘
T6
电机
T7、T8、T10
主轴箱侧面
T11、T15
主轴箱正面
T9、T12
主轴箱凹槽
T13
室温
T14
台虎钳
Tab.3Temperature sensor distribution of machine tool Ⅱ
传感器编号
传感器位置
T1
主轴伸出端底部
T2、T3
主轴伸出端侧部
T4
法兰盘
T5、T8、T13
主轴箱凹槽
T6、T9、T10
主轴箱侧面
T7
箱体顶盖
T11、T12
电机
T14
室温
Tab.4Temperature sensor distribution of machine tool Ⅲ
Fig.13Temperature sensor layout of machine tool Ⅱ, Ⅲ
实验对象
机床Ⅱ
机床Ⅲ
RMSE/μm
MAE/μm
RMSE/μm
MAE/μm
方案①
4.162
3.957
2.883
2.502
方案②
1.200
1.119
1.106
0.852
方案③
3.170
3.102
2.433
2.261
方案④
1.861
1.800
2.179
1.767
方案⑤
3.089
3.024
2.084
1.848
Tab.5Evaluation of thermal error model for two validation machine tools under different measuring point optimization schemes
Fig.14Comparison diagram of prediction results and residuals of two validation machine tools under different measuring point optimization schemes
[1]
邓小雷, 林欢, 王建臣, 等 机床主轴热设计研究综述[J]. 光学精密工程, 2018, 26 (6): 1415- 1429 DENG Xiao-lei, LIN Huan, WANG Jian-chen, et al Review on thermal design of machine tool spindles[J]. Optics and Precision Engineering, 2018, 26 (6): 1415- 1429
doi: 10.3788/OPE.20182606.1415
[2]
LI Y, ZHAO W, LAN S, et al A review on spindle thermal error compensation in machine tools[J]. International Journal of Machine Tools and Manufacture, 2015, 95: 20- 38
doi: 10.1016/j.ijmachtools.2015.04.008
[3]
LIU Y, YONG L, DONG G, et al Thermally induced volumetric error modeling based on thermal drift and its compensation in Z-axis [J]. International Journal of Advanced Manufacturing Technology, 2013, 69: 2735- 2745
doi: 10.1007/s00170-013-5237-x
[4]
HAN J, WANG L, WANG H, et al A new thermal error modeling method for CNC machine tools[J]. International Journal of Advanced Manufacturing Technology, 2012, 62: 205- 212
doi: 10.1007/s00170-011-3796-2
[5]
GUO Q, FAN S, XU R, et al Spindle thermal error optimization modeling of a five-axis machine tool[J]. Chinese Journal of Mechanical Engineering, 2017, 30: 746- 753
doi: 10.1007/s10033-017-0098-0
[6]
LUO J Y, JIAN B L Establishment of low-cost and stable prediction modals applied for thermal displacements in three axes[J]. IEEE Sensors Journal, 2022, 22 (17): 17031- 17042
doi: 10.1109/JSEN.2022.3192547
[7]
MA C, ZHAO L, MEI X, et al Thermal error compensation of high-speed spindle system based on a modified BP neural network[J]. The International Journal of Advanced Manufacturing Technology, 2017, 89: 3071- 3085
doi: 10.1007/s00170-016-9254-4
[8]
CHENG Q, QI Z, ZHANG G, et al Robust modelling and prediction of thermally induced positional error based on grey rough set theory and neural networks[J]. The International Journal of Advanced Manufacturing Technology, 2016, 83: 753- 764
doi: 10.1007/s00170-015-7556-6
[9]
ZHU M, YANG Y, FENG X, et al Robust modeling method for thermal error of CNC machine tools based on random forest algorithm[J]. Journal of Intelligent Manufacturing, 2023, 34: 2013- 2026
doi: 10.1007/s10845-021-01894-w
[10]
LI Z, LI G, XU K, et al Temperature-sensitive point selection and thermal error modeling of spindle based on synthetical temperature information[J]. The International Journal of Advanced Manufacturing Technology, 2021, 113: 1029- 1043
doi: 10.1007/s00170-021-06680-9
[11]
蔡德程, 陈缤, 关欣, 等 机床热特性优化研究综述[J]. 上海理工大学学报, 2021, 43 (5): 443- 451 CAI De-cheng, CHEN Bin, GUAN Xin, et al Review on optimization of thermal characteristics of machine tools[J]. Journal of University of Shanghai for Science and Technology, 2021, 43 (5): 443- 451
doi: 10.13255/j.cnki.jusst.20201230002
[12]
FU G, GONG H, GAO H, et al Integrated thermal error modeling of machine tool spindle using a chicken swarm optimization algorithm-based radial basic function neural network[J]. The International Journal of Advanced Manufacturing Technology, 2019, 105: 2039- 2055
doi: 10.1007/s00170-019-04388-5
[13]
FU G, ZHOU L, LEI G, et al A universal ensemble temperature-sensitive point combination model for spindle thermal error modeling[J]. The International Journal of Advanced Manufacturing Technology, 2022, 119: 3377- 3393
doi: 10.1007/s00170-021-08465-6
[14]
YANG L, ZHAO J, JI S A reconstructed variable regression method for thermal error modeling of machine tools[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90: 3673- 3684
doi: 10.1007/s00170-016-9648-3
[15]
ZHOU Z, HU J, LIU Q, et al The selection of key temperature measurement points for thermal error modeling of heavy-duty computer numerical control machine tools with density peaks clustering[J]. Advances in Mechanical Engineering, 2019, 11 (4): 1- 11
[16]
李逢春, 王海同, 李铁民 重型数控机床热误差建模及预测方法的研究[J]. 机械工程学报, 2016, 52 (11): 154- 160 LI Feng-chun, WANG Hai-tong, LI Tie-min Research on thermal error modeling and prediction of heavy CNC machine tools[J]. Journal of Mechanical Engineering, 2016, 52 (11): 154- 160
doi: 10.3901/JME.2016.11.154
[17]
LI F, LI T, WANG H, et al A temperature sensor clustering method for thermal error modeling of heavy milling machine tools[J]. Applied Sciences, 2017, 7 (1): 82
doi: 10.3390/app7010082
[18]
张伟, 叶文华 基于灰色关联和模糊聚类的机床温度测点优化[J]. 中国机械工程, 2014, 25 (4): 456- 460 ZHANG Wei, YE Wen-hua Optimization of temperature measuring points for machine tools based on grey correlation and fuzzy clustering analysis[J]. China Mechanical Engineering, 2014, 25 (4): 456- 460
doi: 10.3969/j.issn.1004-132X.2014.04.006
[19]
苗恩铭, 龚亚运, 成天驹, 等 支持向量回归机在数控加工中心热误差建模中的应用[J]. 光学精密工程, 2013, 21 (4): 980- 986 MIAO En-ming, GONG Ya-yun, CHENG Tian-ju, et al Application of support vector regression machine to thermal error modelling of machine tools[J]. Optics Precision Engineering, 2013, 21 (4): 980- 986
doi: 10.3788/OPE.20132104.0980