|
|
Model test on long-term dynamic characteristics study of gravity foundation onshore wind turbine |
Ze-hao ZHU1( ),Fu-sheng TONG2,Zhen GUO1,*( ),Li-zhong WANG1,Jia-li ZHANG2,Jiang-bo CHEN2 |
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China 2. Shanxi Industrial Equipment Installation Group Limited Company, Taiyuan 030032, China |
|
|
Abstract In order to study the long-term dynamic characteristic of onshore wind turbines, a 1:50 scale model test for the existing onshore wind turbine structure supported by gravity foundation was carried out, and combined the similitude relationships the natural frequency and the damping’ evolution of the wind turbine structure in service were obtained. A simplified model of top mass-tower-foundation was established, and 7 groups of tests were carried out based on the similitude relationships and the cyclic loading device. Test results show that the natural frequency ratio of the onshore wind turbine structure shows an increasing trend during operation, and the growth rate gradually decreases with the increase of the number of cyclic loading, while the structural damping ratio shows a gradually decreasing development trend. During the cyclic loading process, the strain level of the soil under the foundation and the load frequency have a great impact on the dynamic stability of the structure.
|
Received: 10 October 2020
Published: 20 October 2021
|
|
Fund: 国家自然科学基金资助项目(51779220,51939010);浙江省自然科学基金资助项目(LHZ19E090003,LY15E090002);浙江省重点研发资助项目(2018C03031);装备预研教育部联合基金资助项目(6141A02022137) |
Corresponding Authors:
Zhen GUO
E-mail: zhuzehaozzz@163.com;nehzoug@163.com
|
重力式基础陆上风机结构长期动力特性试验研究
为了揭示陆上风机服役期间动力特性发展规律,针对现有重力式基础支撑的陆上风机结构开展1∶50缩尺模型试验,结合相似性理论获得风机结构在服役状态下的整机频率和阻尼演变规律. 建立顶部集中质量—塔架—基础的简化模型,基于相似性理论和循环加载装置开展7组相关试验. 试验结果表明:陆上风机结构自振频率比在运行期间呈增长的趋势,且增长速率随着循环加载次数增加逐渐减小,结构阻尼比则呈逐渐减小的发展趋势;在循环加载过程中,基底土体应变水平和荷载频率对结构动力稳定性的影响较大.
关键词:
陆上风机,
重力式基础,
模型试验,
相似性理论,
动力特性发展规律
|
|
[1] |
周文杰, 王立忠, 汤旅军, 等 导管架基础海上风机动力响应数值分析[J]. 浙江大学学报:工学版, 2019, 53 (8): 1431- 1437 ZHOU Wen-jie, WANG Li-zhong, TANG Lv-jun, et al Numerical analysis of dynamic responses of jacket supported offshore wind turbines[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (8): 1431- 1437
|
|
|
[2] |
王仲颖, 赵勇强, 时璟丽 中国中长期风电发展路线图[J]. 中国能源, 2012, 34 (3): 5- 8 WANG Zhong-ying, ZHAO Yong-qiang, SHI Jing-li Roadmap of China wind power development in a long-term[J]. Energy of China, 2012, 34 (3): 5- 8
doi: 10.3969/j.issn.1003-2355.2012.03.001
|
|
|
[3] |
迟洪明, 李向辉, 陈丙杰 我国陆上风电场风机基础形式分析[J]. 山西建筑, 2014, 40 (29): 88- 89 CHI Hong-ming, LI Xiang-hui, CHEN Bing-jie Research of wind turbine foundation types of onshore wind power station in China[J]. Shanxi Architecture, 2014, 40 (29): 88- 89
doi: 10.3969/j.issn.1009-6825.2014.29.045
|
|
|
[4] |
水电水利规划设计总院. 风电机组地基基础设计规定(试行): FD003-2007[S]. 北京: 中国水利水电出版社, 2007: 9.
|
|
|
[5] |
MOHAMED W, AUSTRELL P-E A comparative study of three onshore wind turbine foundation solutions[J]. Computers and Geotechnics, 2018, 94: 46- 57
doi: 10.1016/j.compgeo.2017.08.022
|
|
|
[6] |
DET N V. Guidelines for design of wind turbines[M]. 2nd ed. Copenhagen: Jydsk Centraltrykkeri, 2002: 204-205.
|
|
|
[7] |
ANDERSEN L A, VAHDATIRAD M J, SICHANI M T, et al Natural frequencies of wind turbines on monopile foundations in clayey soils: a probabilistic approach[J]. Computers and Geotechnics, 2012, 43: 1- 11
doi: 10.1016/j.compgeo.2012.01.010
|
|
|
[8] |
BAZEOS N, HATZIGEORGIOU G D, HONDROS I D, et al Static, seismic and stability analyses of a prototype wind turbine steel tower[J]. Engineering Structures, 2002, 24 (8): 1015- 1025
doi: 10.1016/S0141-0296(02)00021-4
|
|
|
[9] |
BHATTACHARYA S, COX J, LOMBARDI D, et al Dynamics of offshore wind turbines supported on two foundation[J]. Geotechnical Engineering, 2013, 166 (2): 159- 169
|
|
|
[10] |
HUANG Y P, GUO Z, HONG Y, et al. Investigations on dynamic reponses of offshore wind turbine supported by monopile in sand[C]// The 12th ISOPE Pacific/Asia Offshore Mechanics Symposium. Brisbane: ISOPE, 2016.
|
|
|
[11] |
余璐庆. 海上风机桶形基础安装与支撑结构动力特性研究[D]. 杭州: 浙江大学, 2014: 98-123. YU Lu-qing. Study on the installation behavior of suction caisson and the dynamic properties of offshore wind turbine structure[D].Hangzhou: Zhejiang University, 2014: 98-123.
|
|
|
[12] |
MICHEL P, BUTENWEG C, KLINKEL S Pile-grid foundations of onshore wind turbines considering soil-structure-interaction under seismic loading[J]. Soil Dynamics and Earthquake Engineering, 2018, 109: 299- 311
doi: 10.1016/j.soildyn.2018.03.009
|
|
|
[13] |
柯世堂, 王同光, 曹九发, 等 考虑土−结构相互作用大型风力发电结构风致响应分析[J]. 土木工程学报, 2015, 48 (2): 18- 25 KE Shi-tang, WANG Tong-guang, CAO Jiu-fa, et al Analysis on wind-induced responses of large wind power structures considering soil-structure interaction[J]. China Civil Engineering Journal, 2015, 48 (2): 18- 25
|
|
|
[14] |
曹青, 张豪 考虑土−结构相互作用的风力发电机塔架地震响应分析[J]. 西北地震学报, 2011, 33 (1): 62- 66 CAO Qing, ZHANG Hao Seismic response analysis of wind turbine tower with soil-structure interaction[J]. Northwestern Seismological Journal, 2011, 33 (1): 62- 66
|
|
|
[15] |
BHATTACHARYA S, NIKITAS N, GARNSEY J, et al Observed dynamic soil-structure interaction in scale testing of offshore wind turbine foundations[J]. Soil Dynamics and Earthquake Engineering, 2013, 54: 47- 60
doi: 10.1016/j.soildyn.2013.07.012
|
|
|
[16] |
LOMBARDI D, BHATTACHARYA S Dynamic soil-structure interaction of monopile supported wind turbines in cohesive soil[J]. Soil Dynamics and Earthquake Engineering, 2013, 49: 165- 180
doi: 10.1016/j.soildyn.2013.01.015
|
|
|
[17] |
余璐庆, 王立忠 海上风机支撑结构动力特性模型试验研究[J]. 地震工程学报, 2014, 36 (4): 797- 803 YU Lu-qing, WANG Li-zhong Scaled model test study of the dynamic behavior of an offshore wind turbine support structure[J]. China Earthquake Engineering Journal, 2014, 36 (4): 797- 803
doi: 10.3969/j.issn.1000-0844.2014.04.0797
|
|
|
[18] |
GUO Z, YU L Q, WANG L Z, et al Model tests on the long-term dynamic performance of offshore wind turbines founded on monopiles in sand[J]. Journal of Offshore Mechanics and Arctic Engineering, 2015, 137 (4): 041902
doi: 10.1115/1.4030682
|
|
|
[19] |
OLIVEIRA G, MAGALHÃES F, CUNHA Á, et al Continuous dynamic monitoring of an onshore wind turbine[J]. Engineering Structures, 2018, 164: 22- 39
doi: 10.1016/j.engstruct.2018.02.030
|
|
|
[20] |
ZHAO Y, PAN J, HUANG Z Y, et al Analysis of vibration monitoring data of an onshore wind turbine under different operational conditions[J]. Engineering Structures, 2020, 205: 110071
doi: 10.1016/j.engstruct.2019.110071
|
|
|
[21] |
BHATTACHARYA S Similitude relationship for physica modelling of monopile-supported offshore wind turbines[J]. International Journal of Physical Modelling in Geotechnics, 2011, 11 (2): 58- 68
doi: 10.1680/ijpmg.2011.11.2.58
|
|
|
[22] |
NIKITAS G, VIMALAN N, BHATTACHARYA S An innovative cyclic loading device to study long term performance of offshore wind turbines[J]. Soil Dynamics and Earthquake Engineering, 2016, 82: 154- 160
doi: 10.1016/j.soildyn.2015.12.008
|
|
|
[23] |
黄玉佩. 大直径达桩基础海上风机支撑结构动力特性[D]. 杭州: 浙江大学, 2017: 33-36. HUANG Yu-pei. Dynamic behavior of offshore wind turbine monopile structure[D]. Hangzhou: Zhejiang University, 2017: 33-36.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|