Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (9): 1744-1751    DOI: 10.3785/j.issn.1008-973X.2021.09.016
    
Model test on long-term dynamic characteristics study of gravity foundation onshore wind turbine
Ze-hao ZHU1(),Fu-sheng TONG2,Zhen GUO1,*(),Li-zhong WANG1,Jia-li ZHANG2,Jiang-bo CHEN2
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. Shanxi Industrial Equipment Installation Group Limited Company, Taiyuan 030032, China
Download: HTML     PDF(1198KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to study the long-term dynamic characteristic of onshore wind turbines, a 1:50 scale model test for the existing onshore wind turbine structure supported by gravity foundation was carried out, and combined the similitude relationships the natural frequency and the damping’ evolution of the wind turbine structure in service were obtained. A simplified model of top mass-tower-foundation was established, and 7 groups of tests were carried out based on the similitude relationships and the cyclic loading device. Test results show that the natural frequency ratio of the onshore wind turbine structure shows an increasing trend during operation, and the growth rate gradually decreases with the increase of the number of cyclic loading, while the structural damping ratio shows a gradually decreasing development trend. During the cyclic loading process, the strain level of the soil under the foundation and the load frequency have a great impact on the dynamic stability of the structure.



Key wordsonshore wind turbine      gravity foundation      model test      similitude relationships      evolution of dynamic characteristic     
Received: 10 October 2020      Published: 20 October 2021
CLC:  TU 311.3  
Fund:  国家自然科学基金资助项目(51779220,51939010);浙江省自然科学基金资助项目(LHZ19E090003,LY15E090002);浙江省重点研发资助项目(2018C03031);装备预研教育部联合基金资助项目(6141A02022137)
Corresponding Authors: Zhen GUO     E-mail: zhuzehaozzz@163.com;nehzoug@163.com
Cite this article:

Ze-hao ZHU,Fu-sheng TONG,Zhen GUO,Li-zhong WANG,Jia-li ZHANG,Jiang-bo CHEN. Model test on long-term dynamic characteristics study of gravity foundation onshore wind turbine. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1744-1751.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.09.016     OR     https://www.zjujournals.com/eng/Y2021/V55/I9/1744


重力式基础陆上风机结构长期动力特性试验研究

为了揭示陆上风机服役期间动力特性发展规律,针对现有重力式基础支撑的陆上风机结构开展1∶50缩尺模型试验,结合相似性理论获得风机结构在服役状态下的整机频率和阻尼演变规律. 建立顶部集中质量—塔架—基础的简化模型,基于相似性理论和循环加载装置开展7组相关试验. 试验结果表明:陆上风机结构自振频率比在运行期间呈增长的趋势,且增长速率随着循环加载次数增加逐渐减小,结构阻尼比则呈逐渐减小的发展趋势;在循环加载过程中,基底土体应变水平和荷载频率对结构动力稳定性的影响较大.


关键词: 陆上风机,  重力式基础,  模型试验,  相似性理论,  动力特性发展规律 
参数 符号 数值 单位
轮毅高度 L 90 m
叶轮直径 Db 140.36 m
叶轮转速 n 6~12 r/min
年平均风速 v 7.2 m/s
切入风速 vin 2.5 m/s
切出风速 vout 20 m/s
塔架上部直径 Dt 3.8 m
塔架下部直径 Db 4.6 m
基础埋深 HF 4 m
基础底部直径 D 19.6 m
上部结构质量 M1 233 t
塔架质量 M2 280 t
基础质量 M3 1350 t
荷载作用高度 LF 85 m
湍流系数 I 15 %
Tab.1 Key parameters of 3.4 WM wind turbine
Fig.1 Wind turbine simplified model
物理意义 无量纲化关系 比例大小
几何相似 L/D 1∶50
质量相似 M1M2M3 1∶1.2∶5.78
荷载作用高度相似 LF/D 1∶50
基底应变相似 H/GD2 --
荷载频率相似 fF/fn-in --
Tab.2 Non-dimensional similarity relationships
Fig.2 Model foundation, tower and cyclic loading device
物理量 符号 数值 单位
比重 Gs 2.622
中值粒径 d50 0.16 mm
最大孔隙比 emax 0.943
最小孔隙比 emin 0.60
相对密实度 Dr 60 %
土体切变模量 G 12.2 MPa
Tab.3 Basic physical and mechanic parameters of sand
Fig.3 Analysis graphics of gear system
工况 Fc/Fs Hdyn/GD2 fF/fn-in N
CLT-1 0.267 5.40×10?6 1.5 1 628 992
CLT-2 0.356 7.08×10?6 1.5 1 700 432
CLT-3 0.445 9.00×10?6 1.5 1 377 834
CLT-4 0.506 1.02×10?5 1.5 1 382 974
CLT-5 0.356 7.08×10?6 0.5 2 773 040
CLT-6 0.356 7.08×10?6 1.25 1 340 919
CLT-7 0.356 7.08×10?6 1.875 2 450 498
Tab.4 Indoor model test program
Fig.4 Loading path and parameters of cyclic tests
Fig.5 Change of natural frequency with number of cycles (CLT-1~CLT-4)
Fig.6 Change of natural frequency with number of cycles (CLT-2, CLT-5~CLT-7)
Fig.7 Change of damping ratio with number of cycles (CLT-1~CLT-4)
Fig.8 Change of soil around foundation
Fig.9 Pressure of the base around the gravity foundation
Fig.10 Time-history curve of base soil pressure under cyclic loading
Fig.11 Change of inclination of the foundation with number of cycles (CLT-5)
[1]   周文杰, 王立忠, 汤旅军, 等 导管架基础海上风机动力响应数值分析[J]. 浙江大学学报:工学版, 2019, 53 (8): 1431- 1437
ZHOU Wen-jie, WANG Li-zhong, TANG Lv-jun, et al Numerical analysis of dynamic responses of jacket supported offshore wind turbines[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (8): 1431- 1437
[2]   王仲颖, 赵勇强, 时璟丽 中国中长期风电发展路线图[J]. 中国能源, 2012, 34 (3): 5- 8
WANG Zhong-ying, ZHAO Yong-qiang, SHI Jing-li Roadmap of China wind power development in a long-term[J]. Energy of China, 2012, 34 (3): 5- 8
doi: 10.3969/j.issn.1003-2355.2012.03.001
[3]   迟洪明, 李向辉, 陈丙杰 我国陆上风电场风机基础形式分析[J]. 山西建筑, 2014, 40 (29): 88- 89
CHI Hong-ming, LI Xiang-hui, CHEN Bing-jie Research of wind turbine foundation types of onshore wind power station in China[J]. Shanxi Architecture, 2014, 40 (29): 88- 89
doi: 10.3969/j.issn.1009-6825.2014.29.045
[4]   水电水利规划设计总院. 风电机组地基基础设计规定(试行): FD003-2007[S]. 北京: 中国水利水电出版社, 2007: 9.
[5]   MOHAMED W, AUSTRELL P-E A comparative study of three onshore wind turbine foundation solutions[J]. Computers and Geotechnics, 2018, 94: 46- 57
doi: 10.1016/j.compgeo.2017.08.022
[6]   DET N V. Guidelines for design of wind turbines[M]. 2nd ed. Copenhagen: Jydsk Centraltrykkeri, 2002: 204-205.
[7]   ANDERSEN L A, VAHDATIRAD M J, SICHANI M T, et al Natural frequencies of wind turbines on monopile foundations in clayey soils: a probabilistic approach[J]. Computers and Geotechnics, 2012, 43: 1- 11
doi: 10.1016/j.compgeo.2012.01.010
[8]   BAZEOS N, HATZIGEORGIOU G D, HONDROS I D, et al Static, seismic and stability analyses of a prototype wind turbine steel tower[J]. Engineering Structures, 2002, 24 (8): 1015- 1025
doi: 10.1016/S0141-0296(02)00021-4
[9]   BHATTACHARYA S, COX J, LOMBARDI D, et al Dynamics of offshore wind turbines supported on two foundation[J]. Geotechnical Engineering, 2013, 166 (2): 159- 169
[10]   HUANG Y P, GUO Z, HONG Y, et al. Investigations on dynamic reponses of offshore wind turbine supported by monopile in sand[C]// The 12th ISOPE Pacific/Asia Offshore Mechanics Symposium. Brisbane: ISOPE, 2016.
[11]   余璐庆. 海上风机桶形基础安装与支撑结构动力特性研究[D]. 杭州: 浙江大学, 2014: 98-123.
YU Lu-qing. Study on the installation behavior of suction caisson and the dynamic properties of offshore wind turbine structure[D].Hangzhou: Zhejiang University, 2014: 98-123.
[12]   MICHEL P, BUTENWEG C, KLINKEL S Pile-grid foundations of onshore wind turbines considering soil-structure-interaction under seismic loading[J]. Soil Dynamics and Earthquake Engineering, 2018, 109: 299- 311
doi: 10.1016/j.soildyn.2018.03.009
[13]   柯世堂, 王同光, 曹九发, 等 考虑土−结构相互作用大型风力发电结构风致响应分析[J]. 土木工程学报, 2015, 48 (2): 18- 25
KE Shi-tang, WANG Tong-guang, CAO Jiu-fa, et al Analysis on wind-induced responses of large wind power structures considering soil-structure interaction[J]. China Civil Engineering Journal, 2015, 48 (2): 18- 25
[14]   曹青, 张豪 考虑土−结构相互作用的风力发电机塔架地震响应分析[J]. 西北地震学报, 2011, 33 (1): 62- 66
CAO Qing, ZHANG Hao Seismic response analysis of wind turbine tower with soil-structure interaction[J]. Northwestern Seismological Journal, 2011, 33 (1): 62- 66
[15]   BHATTACHARYA S, NIKITAS N, GARNSEY J, et al Observed dynamic soil-structure interaction in scale testing of offshore wind turbine foundations[J]. Soil Dynamics and Earthquake Engineering, 2013, 54: 47- 60
doi: 10.1016/j.soildyn.2013.07.012
[16]   LOMBARDI D, BHATTACHARYA S Dynamic soil-structure interaction of monopile supported wind turbines in cohesive soil[J]. Soil Dynamics and Earthquake Engineering, 2013, 49: 165- 180
doi: 10.1016/j.soildyn.2013.01.015
[17]   余璐庆, 王立忠 海上风机支撑结构动力特性模型试验研究[J]. 地震工程学报, 2014, 36 (4): 797- 803
YU Lu-qing, WANG Li-zhong Scaled model test study of the dynamic behavior of an offshore wind turbine support structure[J]. China Earthquake Engineering Journal, 2014, 36 (4): 797- 803
doi: 10.3969/j.issn.1000-0844.2014.04.0797
[18]   GUO Z, YU L Q, WANG L Z, et al Model tests on the long-term dynamic performance of offshore wind turbines founded on monopiles in sand[J]. Journal of Offshore Mechanics and Arctic Engineering, 2015, 137 (4): 041902
doi: 10.1115/1.4030682
[19]   OLIVEIRA G, MAGALHÃES F, CUNHA Á, et al Continuous dynamic monitoring of an onshore wind turbine[J]. Engineering Structures, 2018, 164: 22- 39
doi: 10.1016/j.engstruct.2018.02.030
[20]   ZHAO Y, PAN J, HUANG Z Y, et al Analysis of vibration monitoring data of an onshore wind turbine under different operational conditions[J]. Engineering Structures, 2020, 205: 110071
doi: 10.1016/j.engstruct.2019.110071
[21]   BHATTACHARYA S Similitude relationship for physica modelling of monopile-supported offshore wind turbines[J]. International Journal of Physical Modelling in Geotechnics, 2011, 11 (2): 58- 68
doi: 10.1680/ijpmg.2011.11.2.58
[22]   NIKITAS G, VIMALAN N, BHATTACHARYA S An innovative cyclic loading device to study long term performance of offshore wind turbines[J]. Soil Dynamics and Earthquake Engineering, 2016, 82: 154- 160
doi: 10.1016/j.soildyn.2015.12.008
[23]   黄玉佩. 大直径达桩基础海上风机支撑结构动力特性[D]. 杭州: 浙江大学, 2017: 33-36.
HUANG Yu-pei. Dynamic behavior of offshore wind turbine monopile structure[D]. Hangzhou: Zhejiang University, 2017: 33-36.
[1] Jing-jing LIU,Tie-lin CHEN,Mao-hong YAO,Yu-xin WEI,Zi-jian ZHOU. Experimental and numerical study on slurry fracturing of shield tunnels in sandy stratum[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1715-1726.
[2] Ya-ting ZHANG,Roesler Jeffery. Cracking of continuously reinforced concrete pavement based on large-scale model test[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1194-1201.
[3] De-qi TANG,Feng YU,Xiang-guo HUANG,Hai-bing CHEN,Tang-dai XIA. Chamber tests for investigating additional internal forces in existing foundation piles induced by excavation[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1457-1466.
[4] NIU Ji qiang, LIANG Xi feng, ZHOU Dan, LIU Tang hong. Equipment cabin aerodynamic performance of electric multiple unit going through tunnel by dynamic model test[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(7): 1258-1265.
[5] ZHOU Jia-jin, GONG Xiao-nan, WANG Kui-hua, ZHANG Ri-hong, YAN Tian-long. Model test on load transfer mechanism of a static drill rooted nodular pile[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(3): 531-537.
[6] ZHOU Jia-jin, GONG Xiao-nan, WANG Kui-hua, ZHANG Ri-hong, YAN Tian-long. Model test on load transfer mechanism of a static drill rooted nodular pile[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(10): 2-3.
[7] ZHONG Shi-ying, WU Xiao-jun, CAI Wu-jun, LING Dao-sheng. Development of horizontal sliding model test facility
for footpad’s lunar soft landing
[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(3): 465-471.
[8] CHEN Guo-Xin, ZUO Xi, WANG Zhi-Hua, DU Xiu-Li, SUN Tian. Shaking table model test of subway station structure under
far field and near field ground motion
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(10): 1955-1961.