|
|
Three-dimensional yaw wake model based on wind velocity deficit distribution of power function |
Pinhan ZHOU1( ),Lian SHEN2,*( ),Yan HAN1,Jialu XU1,Lihua MI1,Chunsheng CAI3 |
1. School of Civil Engineering, Changsha University of Science and Technology, Changsha 410114, China 2. School of Civil Engineering, Changsha University, Changsha 410022, China 3. School of Transportation, Southeast University, Nanjing 211189, China |
|
|
Abstract To enhance the accuracy of wind turbine wake simulation, a mass flux conservation equation was established based on wind velocity deficit distribution of power function and the Jensen wake model. Supplementary constraints were provided by the continuity equation and anisotropic empirical formulas, and to achieve a transition in wind velocity deficit shape from the near-wake to the far-wake region, a new three-dimensional wake model for wind turbines was proposed incorporating the assumption of Jiménez yaw wake center offset. Model accuracy validation was conducted using wind tunnel test data. Without considering yaw operation, the maximum fitting error in the near-wake region remained within 8%, while in the far-wake region, the simulation error was controlled within 5%. Under yaw conditions, the deflection of the wake center in the horizontal direction was described by the proposed model accurately. In the spanwise profile, the average absolute error between the proposed model and wind tunnel experimental data was within 5%. The validation results show that the proposed model accurately describes the downstream wind velocity distribution of wind turbines, both with and without yaw conditions.
|
Received: 12 January 2024
Published: 18 January 2025
|
|
Fund: 国家自然科学基金资助项目(52108433);湖南省人才工程项目(2021RC4031,2023RC3192,2023TJ-N17);长沙市杰出青年创新培育计划项目(kq1905004);长沙理工大学“实践创新与创业能力提升计划”项目(CLSJCX23040). |
Corresponding Authors:
Lian SHEN
E-mail: zhouph@stu.csust.edu.cn;shenl@ccsu.edu.cn
|
基于幂函数风亏分布的三维偏航尾流模型
为了提升风机尾流模拟精度,基于风亏幂函数分布假定和Jensen尾流模型建立质量通量守恒方程. 将连续性方程与各向异性经验公式作为补充约束,结合Jiménez偏航尾流中心偏移假定提出新型风机三维尾流模型,实现近尾流区域到远尾流区域的风亏形状过渡. 利用风洞试验数据验证所提模型的准确性,在不考虑偏航运行的情况下,近尾流区域拟合的最大误差不超过8%,在远尾流区域,模拟误差不超过5%. 在考虑偏航的工况中,所提模型能够准确描述尾迹中心水平方向的挠曲;在展向剖面内,所提模型与风洞试验实测数据对比的平均绝对误差不超过5%. 验证结果表明,所提模型可以精确描述有无偏航情况下的风机下游风速分布.
关键词:
风力机,
解析模型,
三维尾流模型,
幂律函数,
偏航尾流
|
|
[23] |
SONG D, TU Y, WANG L, et al Coordinated optimization on energy capture and torque fluctuation of wind turbines via variable weight NMPC with fuzzy regulator[J]. Applied Energy, 2022, 312: 118821
doi: 10.1016/j.apenergy.2022.118821
|
|
|
[24] |
SONG D, LI Z, WANG L, et al Energy capture efficiency enhancement of wind turbines via stochastic model predictive yaw control based on intelligent scenarios generation[J]. Applied Energy, 2022, 312: 118773
doi: 10.1016/j.apenergy.2022.118773
|
|
|
[25] |
DAI J, YANG X, HU W, et al Effect investigation of yaw on wind turbine performance based on SCADA data[J]. Energy, 2018, 149: 684- 696
doi: 10.1016/j.energy.2018.02.059
|
|
|
[26] |
DAHLBERG J A, MEDICI D. Potential improvement of wind turbine array efficiency by active wake control (AWC) [C]// European Wind Energy Conference and Exhibition . Madrid: [s.n.], 2003: 65−84.
|
|
|
[27] |
GEBRAAD P M O, TEEUWISSE F W, VAN WINGERDEN J W, et al Wind plant power optimization through yaw control using a parametric model for wake effects: a CFD simulation study[J]. Wind Energy, 2016, 19: 95- 114
doi: 10.1002/we.1822
|
|
|
[28] |
BARTHELMIE R J, LARSEN G C, FRANDSEN S T, et al Comparison of wake model simulations with offshore wind turbine wake profiles measured by sodar[J]. Journal of Atmospheric and Oceanic Technology, 2006, 23 (7): 888- 901
doi: 10.1175/JTECH1886.1
|
|
|
[29] |
BARTHELMIE R J, FRANDSEN S T, NIELSEN M N, et al Modelling and measurements of power losses and turbulence intensity in wind turbine wakes at Middelgrunden offshore wind farm[J]. Wind Energy, 2007, 10: 517- 528
doi: 10.1002/we.238
|
|
|
[30] |
BLONDEL F, CATHELAIN M An alternative form of the super-Gaussian wind turbine wake model[J]. Wind Energy Science, 2020, 5 (3): 1225- 1236
doi: 10.5194/wes-5-1225-2020
|
|
|
[31] |
ZHU X, CHEN Y, XU S, et al Three-dimensional non-uniform full wake characteristics for yawed wind turbine with LiDAR-based experimental verification[J]. Energy, 2023, 270: 126907
doi: 10.1016/j.energy.2023.126907
|
|
|
[32] |
JIMÉNEZ A, CRESPO A, MIGOYA E Application of a LES technique to characterize the wake deflection of a wind turbine in yaw[J]. Wind Energy, 2009, 13: 559- 572
|
|
|
[33] |
LING Z, ZHAO Z, LIU Y, et al A three-dimensional wave model for wind turbines based on a polynomial distribution of wake velocity[J]. Ocean Engineering, 2023, 282: 115064
doi: 10.1016/j.oceaneng.2023.115064
|
|
|
[34] |
WU Y T, PORTÉ-AGEL F Large-eddy simulation of wind-turbine wakes: evaluation of turbine parametrisations[J]. Boundary-Layer Meteorology, 2011, 138: 345- 366
doi: 10.1007/s10546-010-9569-x
|
|
|
[1] |
国家能源局. 2023年全国电力工业统计数据[EB/OL]. (2024−01−26) [2024−03−01] . https://www.nea.gov.cn/2024-01/26/c_1310762246.htm.
|
|
|
[2] |
JENSEN N O. A note on wind generator interaction [R]. Roskilde: Risø National Laboratory, 1983.
|
|
|
[35] |
BASTANKHAH M, PORTÉ-AGEL F Experimental and theoretical study of wind turbine wakes in yawed conditions[J]. Journal of Fluid Mechanics, 2016, 806: 506- 541
doi: 10.1017/jfm.2016.595
|
|
|
[36] |
QIAN G W, ISHIHARA T A new analytical wake model for yawed wind turbines[J]. Energies, 2018, 11 (3): 665
doi: 10.3390/en11030665
|
|
|
[3] |
KATIC I, HØJSTRUP J, JENSEN N O. A simple model for cluster efficiency [C]// European Wind Energy Association Conference and Exhibition . Rome: [s.n.], 1986: 407−410.
|
|
|
[4] |
FRANDSEN S, BARTHELMIE R, PRYOR S, et al Analytical modelling of wind speed deficit in large offshore wind farms[J]. Wind Energy, 2006, 9 (1/2): 39- 53
|
|
|
[5] |
BASTANKHAH M, PORTÉ-AGEL F A new analytical model for wind-turbine wakes[J]. Renewable Energy, 2014, 70: 116- 123
doi: 10.1016/j.renene.2014.01.002
|
|
|
[6] |
TIAN L, ZHU W, SHEN W, et al Development and validation of a new two-dimensional wake model for wind turbine wakes[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 137: 90- 99
doi: 10.1016/j.jweia.2014.12.001
|
|
|
[7] |
GAO X, YANG H, LU L Optimization of wind turbine layout position in a wind farm using a newly-developed two-dimensional wake model[J]. Applied Energy, 2016, 174: 192- 200
doi: 10.1016/j.apenergy.2016.04.098
|
|
|
[8] |
SUN H, YANG H Study on an innovative three-dimensional wind turbine wake model[J]. Applied Energy, 2018, 226: 483- 493
doi: 10.1016/j.apenergy.2018.06.027
|
|
|
[9] |
XIE S, ARCHER C Self-similarity and turbulence characteristics of wind turbine wakes via large-eddy simulation[J]. Wind Energy, 2015, 18: 1815- 1838
doi: 10.1002/we.1792
|
|
|
[10] |
ABKAR M, PORTÉ-AGEL F Influence of atmospheric stability on wind-turbine wakes: a large-eddy simulation study[J]. Physics of Fluids, 2015, 27: 035104
doi: 10.1063/1.4913695
|
|
|
[37] |
HE R, DENG X, LI Y, et al Three-dimensional yaw wake model development with validation from wind tunnel experiments[J]. Energy, 2023, 282: 128402
doi: 10.1016/j.energy.2023.128402
|
|
|
[11] |
HE R, YANG H, SUN H, et al A novel three-dimensional wake model based on anisotropic Gaussian distribution for wind turbine wakes[J]. Applied Energy, 2021, 296: 117059
doi: 10.1016/j.apenergy.2021.117059
|
|
|
[12] |
WANG T, CAI C, WANG X, et al A new Gaussian analytical wake model validated by wind tunnel experiment and LiDAR field measurements under different turbulent flow[J]. Energy, 2023, 271: 127089
doi: 10.1016/j.energy.2023.127089
|
|
|
[13] |
DHIMAN H S, DEB D, FOLEY A M Bilateral Gaussian wake model formulation for wind farms: a forecasting based approach[J]. Renewable and Sustainable Energy Reviews, 2020, 127: 109873
doi: 10.1016/j.rser.2020.109873
|
|
|
[14] |
PARADA L, HERRERA C, FLORES P, et al Wind farm layout optimization using a Gaussian-based wake model[J]. Renewable Energy, 2017, 107: 531- 541
doi: 10.1016/j.renene.2017.02.017
|
|
|
[15] |
GUO N, ZHANG M, LI B, et al Influence of atmospheric stability on wind farm layout optimization based on an improved Gaussian wake model[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 211: 104548
doi: 10.1016/j.jweia.2021.104548
|
|
|
[16] |
田琳琳. 风力机尾流数值模拟及风电场机组布局优化研究[D]. 南京: 南京航空航天大学, 2014: 1–153. TIAN Linlin. Numerical simulation of wind turbine wakes and the study of wind farm layout optimization [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014: 1–153.
|
|
|
[17] |
杨祥生, 赵宁, 田琳琳 两种新修正工程模型对多台风力机尾流数值模拟分析[J]. 太阳能学报, 2018, 39 (4): 1127- 1134 YANG Xiangsheng, ZHAO Ning, TIAN Linlin Numerical simulation analysis of multiple wind turbine wake based on two new modified engineering models[J]. Acta Energiae Solaris Sinica, 2018, 39 (4): 1127- 1134
|
|
|
[18] |
SCHREIBER J, BALBAA A, BOTTASSO C L Brief communication: a double-Gaussian wake model[J]. Wind Energy Science, 2020, 5 (1): 237- 244
doi: 10.5194/wes-5-237-2020
|
|
|
[19] |
KEANE A Advancement of an analytical double-Gaussian full wind turbine wake model[J]. Renewable Energy, 2021, 171: 687- 708
doi: 10.1016/j.renene.2021.02.078
|
|
|
[20] |
AINSLIE J F. Development of an eddy viscosity model for wind turbine wakes [C]// 7th BWEA Wind Energy Conference . Oxford: [s.n.], 1985: 61−66.
|
|
|
[21] |
MAKRIDIS A. Modelling of wind turbine wakes in complex terrain using computational fluid dynamics [D]. Edinburgh: The University of Edinburgh, 2012: 1−328.
|
|
|
[22] |
夏露. 基于二维尾流模型的风电场布局优化研究[D]. 保定: 华北电力大学, 2018: 1−45. XIA Lu. Research on wind farm layout optimization based on 2D wake models [D]. Baoding: North China Electric Power University, 2018: 1−45.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|