|
|
Stress-strain-strength characteristics and microstructure of geopolymer stabilized aeolian sand |
Rui CHEN1( ),Hai CHEN1,Ruoyu HAO1,Weixing BAO1,Lin LI1,Wenmin LUO2 |
1. School of Highway, Chang’an University, Xi’an 710064, China 2. Nanning Rail Transit Construction Limited Company, Nanning 530025, China |
|
|
Abstract To meet the construction requirements in the desert zone, the consolidated undrained (CU) triaxial compression tests and scanning electron microscope (SEM) analysis were carried out, and the effects of mass fraction of fines and geopolymer (GP) content on the shear strength properties and microstructure of aeolian sand were explored based on the critical state theory. Results show that with an increase in the mass fraction of fines, the stress-strain curve of aeolian sand shifts from softening type to hardening type, and the peak deviatoric stress decreases. The peak and residual deviatoric stress of stabilized aeolian sand both increase with increasing GP content, and the stabilized aeolian sand shows obvious brittle failure and dilatancy. The inclusion of fines into aeolian sand benefits the increase of cohesion and reduces the internal friction angle. The cementing effect of GP significantly enhances the cohesion of stabilized aeolian sand and has little effect on the internal friction angle. The critical state lines of stabilized aeolian sand and untreated aeolian sand are almost parallel. For stabilized aeolian sand with a 20% mass fraction of fines, its critical state line is located beneath the one without stabilization and gradually moves downward with increasing GP content. For stabilized aeolian sand with a 30% mass fraction of fines, its critical state line is located above the one without stabilization and gradually moves upward with increasing GP content. SEM analysis results indicate that the inclusion of fines fills the pores and changes the contact pattern between aeolian sand particles, which effectively increases the compactness and provides cementing areas for GP. The combined effect of fines and GP significantly increases the shear strength of stabilized aeolian sand.
|
Received: 06 November 2023
Published: 18 January 2025
|
|
Fund: 国家自然科学基金资助项目(51708041);陕西省自然科学基金资助项目(2022JM-228);长安大学中央高校基本科研业务费专项资金资助项目(300102210213). |
地聚合物固化风积沙应力-应变-强度特性及微观结构
为了满足沙漠工程建设的需求,开展固结不排水(CU)三轴压缩试验与扫描电镜(SEM)分析,基于临界状态理论,探讨细粒的质量分数和地聚合物掺量对风积沙抗剪强度特性及微观结构的影响. 结果表明:随着细粒的质量分数增加,风积沙的应力-应变曲线由软化型向硬化型转变,峰值偏应力降低;固化风积沙的峰值与残余偏应力均随着地聚合物掺量的增加而增大,固化风积沙表现出显著的脆性破坏特征与剪胀趋势;细粒土的掺入能增大风积沙的黏聚力并减小风积沙内摩擦角,地聚合物的胶结作用显著增大了固化风积沙的黏聚力,对风积沙内摩擦角影响较小. 固化风积沙与未固化风积沙的临界状态线大致平行,细粒的质量分数为20%的固化风积沙临界状态线均位于未固化风积沙临界状态线的下方,且随着地聚合物掺量的增加而逐渐下移;细粒的质量分数为30%的固化风积沙临界状态线均位于未固化风积沙临界状态线的上方,且随地聚合物掺量的增加而逐渐上移. SEM分析结果显示,掺入的细粒土填充了风积沙颗粒间的大孔隙,使土体结构致密,改变了风积沙颗粒间的接触形式,为地聚合物提供了可胶结面积;细粒土与地聚合物共同作用显著提升了固化风积沙的抗剪强度.
关键词:
临界状态,
三轴试验,
风积沙,
地聚合物,
固化机制
|
|
[1] |
张龙菊, 黎亮, 孙艳玲, 等 含黏风积沙的抗剪强度特性试验研究[J]. 塔里木大学学报, 2019, 31 (3): 57- 62 ZHANG Longju, LI Liang, SUN Yanling, et al Experimental study on shear strength characteristics of viscous aeolian sand[J]. Journal of Tarim University, 2019, 31 (3): 57- 62
doi: 10.3969/j.issn.1009-0568.2019.03.010
|
|
|
[2] |
巩桢翰. 风积沙及物理改良风积沙填筑重载铁路路基的工程特性研究[D]. 兰州: 兰州交通大学, 2020: 1–66. GONG Zhenhan. Research on engineering characteristics of aeolian sand and physical improvement subgrade of heavy load railway [D]. Lanzhou: Lanzhou Jiaotong University, 2020: 1–66.
|
|
|
[3] |
LOPEZ-QUEROL S, ARIAS-TRUJILLO J, GM-ELIPE M, et al Improvement of the bearing capacity of confined and unconfined cement-stabilized aeolian sand[J]. Construction and Building Materials, 2017, 153: 374- 384
doi: 10.1016/j.conbuildmat.2017.07.124
|
|
|
[4] |
蔡燕燕, 江浩川, 俞缙, 等 水泥固化滨海风积砂力学特性试验及细观数值仿真[J]. 岩土工程学报, 2016, 38 (11): 1973- 1980 CAI Yanyan, JIANG Haochuan, YU Jin, et al Experimental study on mechanical properties and mesoscopic numerical simulation of cement-solidified coastal aeolian sands[J]. Chinese Journal of Geotechnical Engineering, 2016, 38 (11): 1973- 1980
doi: 10.11779/CJGE201611006
|
|
|
[5] |
盛明强, 乾增珍, 鲁先龙 水泥固化的风积沙地基扩展基础抗拔试验研究[J]. 岩土工程学报, 2017, 39 (12): 2261- 2267 SHENG Mingqiang, QIAN Zengzhen, LU Xianlong Uplift load tests on model spread foundations in cement-stabilized aeolian sand[J]. Chinese Journal of Geotechnical Engineering, 2017, 39 (12): 2261- 2267
doi: 10.11779/CJGE201712015
|
|
|
[6] |
张向东, 李军, 孙琦, 等 水泥改良风积砂负温动力性能与流变特征研究[J]. 岩土力学, 2018, 39 (12): 4395- 4403 ZHANG Xiangdong, LI Jun, SUN Qi, et al Study of dynamic performance under negative temperature and rheology characteristic for cement improved aeolian sand[J]. Rock and Soil Mechanics, 2018, 39 (12): 4395- 4403
|
|
|
[7] |
冉武平, 赵杰, 黄文薏, 等 无机处治风积沙强度特性及工程应用研究[J]. 大连理工大学学报, 2018, 58 (2): 141- 146 RAN Wuping, ZHAO Jie, HUANG Wenyi, et al Study of strength characteristics and engineering application of inorganic treated aeolian sand[J]. Journal of Dalian University of Technology, 2018, 58 (2): 141- 146
doi: 10.7511/dllgxb201802005
|
|
|
[8] |
SMAIDA A, HADDADI S, NECHNECH A Improvement of the mechanical performance of dune sand for using in flexible pavements[J]. Construction and Building Materials, 2019, 208: 464- 471
doi: 10.1016/j.conbuildmat.2019.03.041
|
|
|
[9] |
章定文, 王安辉 地聚合物胶凝材料性能及工程应用研究综述[J]. 建筑科学与工程学报, 2020, 37 (5): 13- 38 ZHANG Dingwen, WANG Anhui Review on property of geopolymer binder and its engineering application[J]. Journal of Architecture and Civil Engineering, 2020, 37 (5): 13- 38
|
|
|
[10] |
PROVIS J L, BERNAL S A Geopolymers and related alkali-activated materials[J]. Annual Review of Materials Research, 2014, 44: 299- 327
doi: 10.1146/annurev-matsci-070813-113515
|
|
|
[11] |
刘凤云, 罗怀瑞, 万旭升, 等 低温养护下电石渣激发偏高岭土基地聚物固化土力学特性及固化机制研究[J]. 岩土力学, 2023, 44 (11): 3151- 3164 LIU Fengyun, LUO Huairui, WAN Xusheng, et al Study on mechanical properties and curing mechanism of metakaolin based geopolymer solidified soil activated by calcium carbide slag under low temperature curing[J]. Rock and Soil Mechanics, 2023, 44 (11): 3151- 3164
|
|
|
[12] |
王东星, 王宏伟, 邹维列, 等 碱激发粉煤灰固化淤泥微观机制研究[J]. 岩石力学与工程学报, 2019, 38 (Suppl.1): 3197- 3205 WANG Dongxing, WANG Hongwei, ZOU Weilie, et al Research on micro-mechanisms of dredged sludge solidified with alkali-activated fly ash[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38 (Suppl.1): 3197- 3205
|
|
|
[13] |
吴燕开, 史可健, 胡晓士, 等 海水侵蚀下钢渣粉+水泥固化土强度劣化试验研究[J]. 岩土工程学报, 2019, 41 (6): 1014- 1022 WU Yankai, SHI Kejian, HU Xiaoshi, et al Experimental study on strength degradation of steel slag+cement-solidified soil under seawater erosion[J]. Chinese Journal of Geotechnical Engineering, 2019, 41 (6): 1014- 1022
doi: 10.11779/CJGE201906004
|
|
|
[14] |
周恒宇, 王修山, 胡星星, 等 地聚合物固化淤泥强度增长影响因素及机制分析[J]. 岩土力学, 2021, 42 (8): 2089- 2098 ZHOU Hengyu, WANG Xiushan, HU Xingxing, et al Influencing factors and mechanism analysis of strength development of geopolymer stabilized sludge[J]. Rock and Soil Mechanics, 2021, 42 (8): 2089- 2098
|
|
|
[15] |
张津津, 李博, 余闯, 等 矿渣-粉煤灰地聚合物固化砂土力学特性研究[J]. 岩土力学, 2021, 42 (9): 2421- 2430 ZHANG Jinjin, LI Bo, YU Chuang, et al Mechanical properties of slag-fly ash based geopolymer stabilized sandy soil[J]. Rock and Soil Mechanics, 2021, 42 (9): 2421- 2430
|
|
|
[16] |
BAI L, YANG Z, WU Y, et al Stabilization of aeolian sand for pavement subbase applications using alkali-activated fly ash and slag[J]. Minerals, 2023, 13 (3): 453
doi: 10.3390/min13030453
|
|
|
[17] |
漠河. 特哈马不同含泥量风积沙路基填料特性试验研究[D]. 兰州: 兰州交通大学, 2015: 1–56. MO He. The Study on the performance of Tehama’s aeolian sand with different silt content as subgrade filling [D]. Lanzhou: Lanzhou Jiaotong University, 2015: 1–56.
|
|
|
[18] |
SIMPSON D C, EVANS T M Behavioral thresholds in mixtures of sand and kaolinite clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 142 (2): 04015073
|
|
|
[19] |
CHEN R, CHEN H, KANG Z, et al Experimental study on cyclic behavior of aeolian sand stabilized with geopolymer and fines[J]. Acta Geotechnica, 2024, 19: 669- 683
doi: 10.1007/s11440-023-02176-w
|
|
|
[20] |
NATH P, SARKER P K Use of OPC to improve setting and early strength properties of low calcium fly ash geopolymer concrete cured at room temperature[J]. Cement and Concrete Composites, 2015, 55: 205- 214
doi: 10.1016/j.cemconcomp.2014.08.008
|
|
|
[21] |
冀卫东, 李亚杰, 王旭东 反压饱和对砂土力学特性影响的试验研究[J]. 南京工业大学学报: 自然科学版, 2018, 40 (4): 86- 90 JI Weidong, LI Yajie, WANG Xudong Experimental study for influence of back pressure saturation on mechanical properties of sand[J]. Journal of Nanjing Tech University: Natural Science Edition, 2018, 40 (4): 86- 90
|
|
|
[22] |
张涛, 刘松玉, 蔡国军 木质素改良粉土临界状态剪切特性试验[J]. 中国公路学报, 2016, 29 (10): 20- 28 ZHANG Tao, LIU Songyu, CAI Guojun Experiment on shear behaviour of silt treated with lignin at critical state[J]. China Journal of Highway and Transport, 2016, 29 (10): 20- 28
doi: 10.3969/j.issn.1001-7372.2016.10.003
|
|
|
[23] |
LI X S, DAFALIAS Y F Dilatancy for cohesionless soils[J]. Géotechnique, 2000, 50 (4): 449- 460
|
|
|
[24] |
MACIAS A L, LORIA A F R SANISAND-C*: simple anisotropic constitutive model for sand with cementation[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2023, 47 (15): 2815- 2847
doi: 10.1002/nag.3602
|
|
|
[25] |
蔡正银, 侯贺营, 张晋勋, 等 考虑颗粒破碎影响的珊瑚砂临界状态与本构模型研究[J]. 岩土工程学报, 2019, 41 (6): 989- 995 CAI Zhengyin, HOU Heying, ZHANG Jinxun Critical state and constitutive model for coral sand considering particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2019, 41 (6): 989- 995
doi: 10.11779/CJGE201906001
|
|
|
[26] |
李晓芳. 营双公路风积沙路用性能试验研究[D]. 西安: 长安大学, 2012: 1–58. LI Xiaofang. Study on aeolian sand pavement performance of Yingshuang highway subgrade [D]. Xi’an: Chang’an University, 2012: 1–58.
|
|
|
[27] |
YANG S L, SANDVEN R, GRANDE L Steady-state lines of sand–silt mixtures[J]. Canadian Geotechnical Journal, 2006, 43 (11): 1213- 1219
doi: 10.1139/t06-069
|
|
|
[28] |
XIAO Y, STUEDLEIN A W, CHEN Q, et al Stress-strain-strength response and ductility of gravels improved by polyurethane foam adhesive[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144 (2): 1- 16
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|