Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (6): 1198-1208    DOI: 10.3785/j.issn.1008-973X.2024.06.010
    
Influence of scale effect on mechanical properties and constitutive model of gravel materials
Xican CUI1,2(),Lingkai ZHANG1,2,*(),Jianxiang WANG3
1. College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China
2. Xinjiang Key Laboratory of Hydraulic Engineering Security and Water Disasters Prevention, Urumqi 830052, China
3. College of Architectural Engineering, Guizhou Minzu University, Guiyang 550025, China
Download: HTML     PDF(3405KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The triaxial instrument has a scale effect due to the particle size limitation. The Xinjiang Altash dam building materials were taken as the research object, and through the large-scale triaxial numerical simulation test, the influences of scale effect on the mechanical properties and nonlinear constitutive model of gravel materials were studied from the macro and micro perspectives. Results showed that, with the increase of confining pressure, the extreme value of deviatoric stress of the sample increased, the degree of shear shrinkage was significant and the dilatancy characteristics were suppressed. The peak strength was increased with increasing specimen size, and the specimen transitioned from shear shrinkage to shear expansion. With the increase of specimen size, the internal friction angle component, the elastic modulus parameter, and the bulk modulus parameter of Duncan's model parameters were significantly increased, and the effects of other parameters were negligible. The relationship between internal friction angle component and particle size for gravel was expressed as a logarithmic function, and the relationships between elastic modulus parameter, bulk modulus parameter and specimen size were expressed as linear functions. As the size of the specimen increased, the range of the deformation concentration zone was widely expanded, and its form gradually changed from the "X" type to the "X+x" or "X+x+x" type deformation concentration zone. As the specimen size increased, the initial coordination number was increased. During loading, the coordination number increased and the specimen was dominated by shear shrinkage. As the specimen size increased, the coordination number was shown to decrease gradually, and the shear shrinkage was suppressed.



Key wordsgravel      discrete element analysis      triaxial test simulation      scale effect      Duncan model     
Received: 16 May 2023      Published: 25 May 2024
CLC:  TU 431  
Fund:  国家自然科学基金青年科学基金资助项目(52109136).
Corresponding Authors: Lingkai ZHANG     E-mail: cuixican0317@qq.com;xjau_zlk@163.com
Cite this article:

Xican CUI,Lingkai ZHANG,Jianxiang WANG. Influence of scale effect on mechanical properties and constitutive model of gravel materials. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1198-1208.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.06.010     OR     https://www.zjujournals.com/eng/Y2024/V58/I6/1198


缩尺效应对砂砾石料力学特性及其本构模型的影响

针对三轴仪受颗粒尺寸的限制而存在缩尺效应的问题,以新疆阿尔塔什筑坝料为研究对象,通过大型三轴数值模拟试验,从宏细观角度开展缩尺效应对砂砾石料力学特性及其非线性本构模型影响的研究. 结果表明,随着围压的增加,试样偏应力极值增大,剪缩程度显著而剪胀特性被抑制;随着试样尺寸的增大,其峰值强度提高,试样由剪缩向剪胀过渡. 随着试样尺寸的增大,邓肯模型的内摩擦角分量、弹性模量参数、体积模量参数均明显增大,其他参数的影响可忽略不计. 砂砾石料的内摩擦角分量与颗粒粒径呈对数型函数关系,弹性模量参数、体积模量参数与颗粒粒径均呈线性函数关系. 随着试样尺寸的增大,变形集中区的范围更广泛,其形式逐渐由“X”型变为“X+x”或“X+x+x”型变形集中区. 初始阶段配位数随着试样尺寸的增大而增加;加载过程中配位数增加,试样以剪缩为主,随着试样尺寸的增大其配位数逐渐呈减小趋势,剪缩性被抑制.


关键词: 砂砾石料,  离散元分析,  三轴试验模拟,  缩尺效应,  邓肯模型 
Fig.1 Stress-strain curves of laboratory test and numerical model test
σ3/kPaR2
D=300 mmD=800 mm
5000.9760.988
1 0000.9930.981
1 5000.9980.987
Tab.1 Decision coefficient statistics
Fig.2 Prototype gradation and design gradation curves (similar gradation method)
Fig.3 Clusters of stone particles
Fig.4 Triaxial numerical samples of different sizes
Fig.5 Deviatoric stress-axial strain-volumetric strain relationship curves of specimens under different confining pressures
Fig.6 Relationship curves of deviatoric stress-axial strain-volumetric strain for specimens of different sizes
D/mmφ0/(°)Δφ/(°)knkbmRfGF
30047.728.181 318.060.45719.080.150.820.52?0.04
40048.858.411 400.620.47765.460.180.830.48?0.11
50049.898.631 489.410.49813.290.200.830.44?0.12
80052.309.091 732.970.52947.680.250.850.41?0.12
Tab.2 Duncan model parameters of gravels with different sizes
Fig.7 Relationship curves between nonlinear strength indexes and σ3, lg dmax
Fig.8 Relationship curves between stiffness indexes and σ3, lg dmax
dmax/mmkn
601 318.060.45
801 400.620.47
1001 489.410.49
1601 732.970.52
Tab.3 k and n values of gravels with different sizes
Fig.9 Relationship curves of deformation indexes G, F and dmax in E-v model
Fig.10 Relationship curves of deformation indexes and σ3, dmax, lg dmax in E-B model
dmax/mmkbm
60719.080.15
80765.460.18
100813.290.20
160947.680.25
Tab.4 kb and m values of gravels with different sizes
dmax/mmw/%dmax/mmw/%
6053.730094.9
10066.8450100.0
20087.1
Tab.5 Prototype gradation of gravel material
dmax/mmφ0/(°)Δφ/(°)knkbmRfGF
1)注:表中为建议取值,括号内为计算值.
20053.499.091 900.00
(1 900.20)1)
0.521 040.00
(1 039.01)
0.250.850.41?0.12
30055.509.092 315.00
(2 315.20)
0.521 270.00
(1 267.01)
0.250.850.41?0.12
40056.939.092 730.00
(2 730.20)
0.521 500.00
(1 495.01)
0.250.850.41?0.12
Tab.6 Parameter deduction of Duncan model for on-site damming gravels
Fig.11 Rotation nephograms of specimens with different sizes
Fig.12 Evolution curves of particle coordination number
[1]   HALL E B, GORDON B B. Triaxial testing with large-scale high pressure equipment[J]. Laboratory Shear Testing of Soils, 1963, 361: 315- 328
doi: 10.1061/JSFEAQ.0001433
[2]   VARADARAIAN A, SHARMA K G, VENKATACH -ALAM K, et al Testing and modeling two rockfill materials[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129 (3): 206- 218
doi: 10.1061/(ASCE)1090-0241(2003)129:3(206)
[3]   凌华, 殷宗泽, 朱俊高, 等 堆石料强度的缩尺效应试验研究[J]. 河海大学学报: 自然科学版, 2011, 39 (5): 540- 544
LING Hua, YIN Zongze, ZHU Jungao, et al Experimental study of scale effect on strength of rockfill materials[J]. Journal of Hohai University: Natural Sciences, 2011, 39 (5): 540- 544
[4]   郦能惠, 朱铁, 米占宽 小浪底坝过渡料的强度与变形特性及缩尺效应[J]. 水电能源科学, 2001, 19 (2): 39- 42
LI Nenghui, ZHU Tie, MI Zhankuan Strength and deformation properties of transition zone material of Xiaolangdi dam and scale effect[J]. International Journal Hydroelectric Energy, 2001, 19 (2): 39- 42
[5]   武利强, 朱晟, 章晓桦, 等 粗粒料试验缩尺效应的分析研究[J]. 岩土力学, 2016, 37 (8): 2187- 2197
WU Liqiang, ZHU Sheng, ZHANG Xiaohua, et al Analysis of scale effect of coarse-grained materials[J]. Rock and Soil Mechanics, 2016, 37 (8): 2187- 2197
[6]   孔宪京, 宁凡伟, 刘京茂, 等 基于超大型三轴仪的堆石料缩尺效应研究[J]. 岩土工程学报, 2019, 41 (2): 255- 261
KONG Xianjing, NING Fanwei, LIU Jingmao, et al Scale effect of rockfill materials using super-large triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2019, 41 (2): 255- 261
[7]   NAKATA Y, KATO Y, HYODO M, et al One dimensional compression behaviour of uniformly graded sand related to single particle crushing strength[J]. Soils and Foundations, 2001, 41 (2): 39- 51
doi: 10.3208/sandf.41.2_39
[8]   马刚. 周伟, 常晓林, 等. 堆石料缩尺效应的细观机制研究[J]. 岩石力学与工程学报, 2012, 31 (12): 2473- 2482
MA Gang, ZHOU Wei, CHANG Xiaolin, et al Mesoscopic mechanism study of scale effects of rockfill[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31 (12): 2473- 2482
[9]   周伟, 常晓林, 马刚, 等 堆石体缩尺效应研究进展分析[J]. 水电与抽水蓄能, 2017, 1: 17- 23
ZHOU Wei, CHANG Xialin, MA Gang, et al Analysis on the research development of rockfill scale effect[J]. Hydropower and Pumped Storage, 2017, 1: 17- 23
[10]   徐琨, 杨启贵, 周伟, 等 基于可破碎离散元法的堆石料应力变形及剪胀特性缩尺效应研究[J]. 中国农村水利水电, 2022, (3): 200- 206
XU Kun, YANG Qigui, ZHOU Wei, et al Research on the scaling effect of the stress deformation feature and the dilatancy characteristics of rockfill material based on the crushable DEM[J]. China Rural Water and Hydropower, 2022, (3): 200- 206
[11]   李响, 马刚, 周伟, 等 考虑颗粒强度尺寸效应的堆石体缩尺效应研究[J]. 水力发电学报, 2016, 35: 12- 22
LI Xiang, MA Gang, ZHOU Wei et al. Scale effects of rockfill materials considering size effect of particle strength[J]. Journal of Hydroelectric Engineering, 2016, 35: 12- 22
[12]   常晓林, 马刚, 周伟, 等 颗粒形状及粒间摩擦角对堆石体宏观力学行为的影响[J]. 岩土工程学报, 2012, 34: 646- 653
CHANG Xiaolin, MA Gang, ZHOU Wei, et al Influences of particle shape and inter-particle friction angle on macroscopic response of rockfill[J]. Chinese Journal of Geotechnical Engineering, 2012, 34: 646- 653
[13]   花俊杰, 周伟, 常晓林, 等 堆石体应力变形的尺寸效应研究[J]. 岩石力学与工程学报, 2010, 29: 328- 335
HUA Junjie, ZHOU Wei, CHANG Xiaolin, et al Study of scale effect on stress and deformation of rockfill[J]. Journal of Rock Mechanics and Engineering, 2010, 29: 328- 335
[14]   易颖, 周伟, 马刚, 等 基于精确缩尺的颗粒材料流变研究[J]. 岩土力学, 2016, 37: 1799- 1808
YI Ying, ZHOU Wei, MA Gang, et al Study of rheological behaviors of granular materials based on exact scaling laws[J]. Rock and Soil Mechanics, 2016, 37: 1799- 1808
[15]   ZHOU W, MA G, CHANG X, et al Influence of particle shape on behavior of rockfill using a three-dimensional deformable DEM[J]. Journal of Engineering Mechanics, 2013, 139 (12): 1868- 1873
doi: 10.1061/(ASCE)EM.1943-7889.0000604
[16]   宿辉, 杨家琦, 胡宝文, 等 颗粒离散元岩石模型的颗粒尺寸效应研究[J]. 岩土力学, 2018, 39 (12): 4642- 4650
SU Hui, YANG Jiaqi, HU Baowen, et al Study of particle size effect of rock model based on particle discrete element method[J]. Rock and Soil Mechanics, 2018, 39 (12): 4642- 4650
[17]   CHANG C Y, DUNCAN J M Analysis of soil movement around a deep excavation[J]. Journal of the Soil Mechanics and Foundations Division, 1970, 96 (5): 1655- 1681
doi: 10.1061/JSFEAQ.0001459
[18]   DUNCAN J M, BYRNE P, WONG K. Strength, stress-strain and bulk modulus parameters for finite element analyses of stresses and movements in soil masses: UCB/GT/80-01 [R]. Berkeley: University of California, 1980.
[19]   NAYLOR D J, KNIGHT D J, DING D Coupled consolidation analysis of the construction and subsequent performance of Monasavu Dam[J]. Computers and Geotechnics, 1988, 6 (2): 95- 129
doi: 10.1016/0266-352X(88)90076-6
[20]   高莲士, 汪召华, 宋文晶 非线性解耦K-G模型在高面板堆石坝应力变形分析中的应用[J]. 水利学报, 2001, (10): 1- 7
GAO Lianshi, WANG Zhaohua, SONG Wenjing The application of nonlinear uncoupled K-G model to deformation analysis of high concrete face rockfill dam[J]. Journal of Hydraulic Engineering, 2001, (10): 1- 7
[21]   高莲士, 蔡昌光, 朱家启 堆石料现场侧限压缩试验解耦K-G模型参数分析方法及在面板坝中的应用[J]. 水力发电学报, 2006, (6): 26- 33
GAO Lianshi, CAI Changguang, ZHU Jiaqi An analysis method for uncoupled K-G model parameters in site confined compression test of rock-fill materials and its application on CFRD[J]. Journal of Hydroelectric Engineering, 2006, (6): 26- 33
[22]   ROSCOE K H, THURAIRAJAH A, SCHOFIELD A N Yielding of clays in states wetter than critical[J]. Géotechnique, 1963, 13 (3): 211- 240
[23]   LADE P V, DUNCAN J M Elastoplastic stress strain theory for cohesionless soil[J]. Journal of the Geotechnical Engineering Division, 1975, 101 (10): 1037- 1053
doi: 10.1061/AJGEB6.0000204
[24]   DESAI C S, GALLAGHER R H. Mechanics of engineering materials [M]. London: J Wiley and Sons, 1984.
[25]   黄文熙 土的弹塑性应力-应变模型理论[J]. 清华大学学报: 自然科学版, 1979, (1): 1- 26
HUANG Wenxi Theory of elastoplastic stress-strain models for soils[J]. Journal of Tsinghua University: Science and Technology, 1979, (1): 1- 26
[26]   殷宗泽, 卢海华, 朱俊高 土体的椭圆-抛物双屈服面模型及其柔度矩阵[J]. 水利学报, 1996, (12): 23- 28
YIN Zongze, LU Haihua, ZHU Jungao The elliptic-parabolic yield surfaces model and its softness matrix[J]. Journal of Hydraulic Engineering, 1996, (12): 23- 28
[27]   肖化文 邓肯-张E-B模型参数对高面板坝应力变形的影响[J]. 长江科学院院报, 2004, 21 (6): 41- 44
XIAO Huawen Effect of Duncan-Chang E-B model parameters on stress and deformation of high CFRD dam[J]. Journal of Yangtze River Scientific Research Institute, 2004, 21 (6): 41- 44
[28]   邹德高, 陈楷, 余翔, 等. 筑坝材料特性尺寸效应三轴试验及大坝三维非线性静、动力精细化有限元分析 [R]. 大连: 工程抗震研究所, 2019.
[29]   崔熙灿, 张凌凯, 王建祥 高堆石坝砂砾石料的细观参数反演及三轴试验模拟[J]. 农业工程学报, 2022, 38 (4): 113- 122
CUI Xican, ZHANG Lingkai, WANG Jianxiang Inversion of meso parameters and triaxial test simulation of the gravel materials for high rockfill dam[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38 (4): 113- 122
[30]   中华人民共和国水利部. 土工试验方法标准:GBT 50123—2019 [S]. 北京: 中国计划出版社, 2019.
[31]   周辉, 程广坦, 朱勇, 等 基于三维扫描和三维雕刻技术的岩石结构面原状重构方法及其力学特性[J]. 岩土力学, 2018, 39 (2): 417- 425
ZHOU Hui, CHENG Guangan, ZHU Yong, et al A new method to originally reproduce rock structural plane by integrating 3D scanning and 3D carving techniques and mechanical characteristics of reproduced structural planes[J]. Rock and Soil Mechanics, 2018, 39 (2): 417- 425
[1] Wen-bin NIE,hui PEI,Li-wei PANG,Jia-xin LI,yan SHI,Zhi-yi BAO. Spatiotemporal evolution and driving force of regional blue-green space[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(11): 2266-2276.
[2] HAN Yun-dong, YAO Song. Scale effect analysis in aerodynamic performance of high-speed train[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(12): 2383-2391.
[3] FU Jian-xin, SONG Wei-dong, TAN Yu-ye. Influence degree analysis of rock mass' mechanical parameters on roadway's deformation characteristics[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(12): 2365-2372.