Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (6): 1185-1197    DOI: 10.3785/j.issn.1008-973X.2024.06.009
    
Effects of axial compression ratio and face-bearing plate thickness on seismic performance of hybrid joints
Siyuan FENG1,2(),Yuchen TAO1,2,Zhenfen JIN2,3,Weijian ZHAO1,2,*()
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. Center for Balance Architecture, Zhejiang University, Hangzhou 310028, China
3. The Architectural Design and Research Institute of Zhejiang University Co. Ltd, Hangzhou 310027, China
Download: HTML     PDF(4368KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The influence of different axial compression ratios and face-bearing plate thicknesses was considered, in order to investigate the seismic performance of a new whole column-section diaphragm type reinforced concrete column-steel beam (RCS) hybrid frame joint. Two groups of six 3/4 scaled beam-column joints were subjected to low-cycle reversed loading tests. All specimens experienced the expected joint shear failure, and the hysteresis curve showed a bow shape which indicated that a good seismic performance was available for the novel joints. Eventually, the specimens lost their bearing capacity due to concrete cracking and spalling in the joint region. The test results showed that, within the range of axial compression ratios from 0 to 0.25, the cracking load of the RCS joints increased with the increase of the axial compression ratio. The number of diagonal cracks appearing during the phase preceding the peak load diminished, accompanied by a reduction in their width, and the bearing capacity, stiffness, and energy dissipation capacity of the specimens all improved. The bonding stress within the joint region also diminished as the axial compression ratio increased, indicating a pronounced enhancement in the bonding condition within the joint. Compared to the unidirectional face-bearing plate specimens, the bidirectional face-bearing plate specimens exhibit significant improvements in bearing capacity, ductility, and energy dissipation capacity. The increase in the thickness of the bidirectional face-bearing plate from 6 mm to 10 mm has a relatively limited effect on the peak bearing capacity and stiffness of the specimens.



Key wordsreinforced concrete column-steel beam      beam-column joint      axial compression ratio      face-bearing plate      seismic performance     
Received: 23 May 2023      Published: 25 May 2024
CLC:  TU 398  
Fund:  国家自然科学基金资助项目(51879230);浙江大学平衡建筑研究中心研发计划资助项目(K-20203512-15C).
Corresponding Authors: Weijian ZHAO     E-mail: 22112263@zju.edu.cn;zhaoweijian@zju.edu.cn
Cite this article:

Siyuan FENG,Yuchen TAO,Zhenfen JIN,Weijian ZHAO. Effects of axial compression ratio and face-bearing plate thickness on seismic performance of hybrid joints. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1185-1197.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.06.009     OR     https://www.zjujournals.com/eng/Y2024/V58/I6/1185


轴压比和面承板厚度对混合节点抗震性能的影响

为了研究新型柱全截面隔板式钢筋混凝土柱-钢梁(RCS)混合框架节点形式的抗震性能,考虑不同轴压比和面承板厚度的影响,对2组共6个3/4比例的梁柱节点进行低周往复加载试验研究. 试验中所有试件均发生设计预期的节点剪切破坏,滞回曲线呈弓型,表明节点具有良好的抗震性能. 试件最终因节点区的混凝土开裂剥落而丧失承载力. 试验结果表明,当轴压比为0~0.25时,随着轴压比的增大, RCS节点开裂荷载有所增大,峰值荷载前斜裂缝数量减少、宽度减小,试件的承载力、刚度和耗能能力均有所提高. 节点域柱纵筋黏结应力随轴压比增大而减小,表明节点域内黏结状况有明显改善. 相较于单向面承板试件,双向面承板试件在承载能力、延性和耗能能力方面均表现出显著提高;当双向面承板厚度由6 mm增加至10 mm时,试件峰值承载力和刚度的提升幅度相对有限.


关键词: 钢筋混凝土柱-钢梁,  梁柱节点,  轴压比,  面承板,  抗震性能 
Fig.1 Panel shear failure and vertical bearing failure of RCS joints
试件名称$n$面承板形式$t$/mm
J-B-a00单向面承板10
J-B-a140.14单向面承板10
J-B-a250.25单向面承板10
J-BB60.14双向面承板6
J-BB80.14双向面承板8
J-BB100.14双向面承板10
Tab.1 Parameters of joint specimens
Fig.2 Dimensions and reinforcement details of specimens
Fig.3 Photos of RCS joint forms
Fig.4 Planar graphs of RCS joint core region
Fig.5 Loading setup of quasi-static test
Fig.6 Beam-end displacement loading pattern
批次试件构件类型fy /MPafu /MPaEs /(105 MPa)A/%fcu /MPa
第1批J-B-a14
J-BB10
18 mm钢板3565361.9921.3
10 mm钢板3615161.9224.258
$\phi $22 mm钢筋4266032.0059
$\phi $8 mm钢筋4846342.09
第2批J-B-a0
J-B-a25
J-BB6
J-BB8
18 mm钢板3915372.0123.0
10 mm钢板4145591.9823.151
8 mm钢板4095561.9925.052
6 mm钢板4905961.9721.350
$\phi $22 mm钢筋4146041.9928.550
$\phi $8 mm钢筋4716432.0221.7
Tab.2 Material properties of steel and concrete
Fig.7 Crack propagation and failure mode of specimens
Fig.8 Hysteretic curves for specimens
Fig.9 Load-displacement skeleton curves of joint specimens
试件名称Pcr/kNPy/kNΔy/mmPmax/kNΔmax/mmPu/kNΔu/mmμ
J-B-a058172.9836.47197.1673.840167.59132.173.63
J-B-a14119207.4128.48242.2343.090205.90106.643.74
J-B-a25154216.0528.16248.5545.030211.27116.074.12
J-BB6137230.7635.78268.1373.005227.91126.573.54
J-BB8135243.1137.63280.7589.460238.64130.893.48
J-BB10140253.7933.81293.7058.800249.64104.403.09
Tab.3 Characteristic parameters of specimens
Fig.10 Influence of design parameters on bearing capacity of joints
Fig.11 Strength degradation curves of joint specimens
Fig.12 Stiffness degradation curve of joint specimen
Fig.13 Cumulative energy dissipation curves of joints
Fig.14 Stirrup strain-DR curves in middle of joint
Fig.15 Comparison of stirrup strain in middle of joint
Fig.16 Load-strain curve of external stirrup reinforcement at joints
Fig.17 Load-strain curve of longitudinal reinforcement measuring point above joint
Fig.18 Average bond stress curve of joints
Fig.19 Load-shear strain curve of central region of out-of-plane face-bearing plate
[1]   TAO Y, ZHAO W, SHU J, et al Nonlinear finite-element analysis of the seismic behavior of RC column-steel beam connections with shear failure mode[J]. Journal of Structural Engineering, 2021, 147 (10): 04021160
doi: 10.1061/(ASCE)ST.1943-541X.0003132
[2]   PARRA-MONTESINOS G, WIGHT J K Seismic response of exterior RC column-to-steel beam connections[J]. Journal of Structural Engineering, 2000, 126 (10): 1113- 1121
doi: 10.1061/(ASCE)0733-9445(2000)126:10(1113)
[3]   DEIERLEIN G G, SHEIKH T M, YURA J A, et al Beam-column moment connections for composite frames: part 2[J]. Journal of Structural Engineering, 1989, 115 (11): 2877- 2896
doi: 10.1061/(ASCE)0733-9445(1989)115:11(2877)
[4]   SHEIKH T M, DEIERLEIN G G, YURA J A, et al Beam-column moment connections for composite frames: part 1[J]. Journal of Structural Engineering, 1989, 115 (11): 2858- 2876
doi: 10.1061/(ASCE)0733-9445(1989)115:11(2858)
[5]   ASCE Task Committee on Design Criteria for Composite Structures in Steel and Concrete Guidelines for design of joints between steel beams and reinforced concrete columns[J]. Journal of Structural Engineering, 1994, 120 (8): 2330- 2357
doi: 10.1061/(ASCE)0733-9445(1994)120:8(2330)
[6]   BABA N, NISHIMURA Y. Seismic behavior of RC column-s beam moment frames [C]// 12th World Conference on Earthquake Engineering . Auckland: New Zealand Society for Earthquake Engineering, 2000.
[7]   BABA N, NISHIMURA Y. Stress transfer on through beam type steel beam-reinforced concrete column joints [C]// 6th ASCCS International Conference on Steel-Concrete Composite Structures . Los Angeles: University of Southern California, 2000, 2: 1183−1190.
[8]   NISHIYAMA I, KURAMOTO H, ITADANI H, et al. Bi-directional behavior of interior-, exterior-, and corner-joints of RCS system [C]// 12th World Conference on Earthquake Engineering . Auckland: New Zealand Society for Earthquake Engineering, 2000.
[9]   NOGUCHI H, UCHIDA K. Fem analysis of hybrid structural frames with R/C columns and steel beams [C]// 6th ASCCS International Conference on Steel-Concrete Composite Structures . Los Angle: University of Southern California, 2000, 1099−1106.
[10]   ALIZADEH S, ATTARI N K A, KAZEMI M T Experimental investigation of RCS connections performance using self-consolidated concrete[J]. Journal of Constructional Steel Research, 2015, 114: 204- 216
doi: 10.1016/j.jcsr.2015.07.026
[11]   MA H, DONG J, LIU Y, et al Cyclic loading tests and shear strength of composite joints with steel-reinforced recycled concrete columns and steel beams[J]. Engineering Structures, 2019, 199: 109605
doi: 10.1016/j.engstruct.2019.109605
[12]   KHALOO A, DOOST R B Seismic performance of precast RC column to steel beam connections with variable joint configurations[J]. Engineering Structures, 2018, 160: 408- 418
doi: 10.1016/j.engstruct.2018.01.039
[13]   LEE H J, PARK H G, HWANG H J, et al Cyclic lateral load test for RC column-steel beam joints with simplified connection details[J]. Journal of Structural Engineering, 2019, 145 (8): 04019075
doi: 10.1061/(ASCE)ST.1943-541X.0002369
[14]   NGUYEN X H, NGUYEN Q H, LE D D, et al Experimental study on seismic performance of new RCS connection[J]. Structures, 2017, 9: 53- 62
[15]   杨建江, 郝志军 钢梁-钢筋混凝土柱节点在低周反复荷载作用下受力性能的试验研究[J]. 建筑结构, 2001, 31 (7): 35- 38
YANG Jianjiang, HAO Zhijun Experimental study on behavior of steel beam-RC column joint under the reversed load[J]. Building Structure, 2001, 31 (7): 35- 38
[16]   易勇. 钢梁-钢筋混凝土柱组合框架中间层中节点抗震性能试验研究[D]. 重庆: 重庆大学, 2005.
YI Yong. Experimental research on seismic behavior of interior joint in the composite frame consisting of steel beams and reinforced concrete columns. [D]. Chongqing: Chongqing University, 2005.
[17]   戴绍斌, 黄俊, 张亮权, 等 钢梁与混凝土墙螺栓连接节点受力性能研究[J]. 武汉理工大学学报, 2007, 29 (11): 103- 107
DAI Shaobin, HUANG Jun, ZHANG Liangquan, et al Research on mechanical performance of high strength bolt connection joint between steel beam and concrete wall[J]. Journal of Wuhan University of Technology, 2007, 29 (11): 103- 107
[18]   门进杰, 郭智峰, 史庆轩, 等 钢筋混凝土柱-腹板贯通型钢梁混合框架中节点抗震性能试验研究[J]. 建筑结构学报, 2014, 35 (8): 72- 79
MEN Jinjie, GUO Zhifeng, SHI Qingxuan, et al Research on mechanical performance of high strength bolt connection joint between steel beam and concrete wall[J]. Journal of Building Structures, 2014, 35 (8): 72- 79
[19]   郭智峰, 门进杰, 史庆轩, 等 钢筋混凝土柱-钢梁组合节点力学性能初探[J]. 土木工程学报, 2013, (Suppl. 1): 101- 105
GUO Zhifeng, MEN Jinjie, SHI Qingxuan, et al Study of the joint of reinforced concrete column to steel beam[J]. China Civil Engineering Journal, 2013, (Suppl. 1): 101- 105
[20]   LING Y, ZHENG W, LI Y, et al Study on seismic behavior of reinforced concrete column-steel beam side joints[J]. Journal of Asian Architecture and Building Engineering, 2020, 19 (3): 187- 202
[21]   LING Y, XU J, GUO Z, et al A study on static behavior of new reinforced concrete column-steel beam composite joints[J]. Journal of Asian Architecture and Building Engineering, 2021, 20 (1): 44- 60
doi: 10.1080/13467581.2020.1816547
[22]   李贤, 肖岩, 毛炜烽 钢筋混凝土柱-钢梁节点的抗震性能研究[J]. 湖南大学学报:自然科学版, 2007, 34 (2): 1- 5
LI Xian, XIAO Yan, MAO Weifeng Experimental research on seismic behavior of reinforced concrete column-to-steel beam joints with bolted end-plate[J]. Journal of Hunan University: Natural Sciences, 2007, 34 (2): 1- 5
[23]   郭子雄, 朱奇云, 刘阳, 等 装配式钢筋混凝土柱-钢梁框架节点抗震性能试验研究[J]. 建筑结构学报, 2012, 33 (7): 98- 105
GUO Zixiong, ZHU Qiyun, LIU Yang, et al Experimental study on seismic behavior of a new type of prefabricated RC column-steel beam frame connections[J]. Journal of Building Structures, 2012, 33 (7): 98- 105
[24]   刘阳, 郭子雄, 戴镜洲, 等 不同破坏机制的装配式RCS框架节点抗震性能试验研究[J]. 土木工程学报, 2013, 46 (3): 18- 28
LIU Yang, GUO Zixiong, DAI Jingzhou, et al Experimental study on seismic behavior of prefabricated RCS frame joints with different failure mechanisms[J]. China Civil Engineering Journal, 2013, 46 (3): 18- 28
[25]   陆铁坚, 贺子瑛, 余志武, 等 钢-混凝土组合梁与混凝土柱节点的抗震性能试验研究[J]. 建筑结构学报, 2008, (1): 70- 74
LU Tiejian, HE Ziying, YU Zhiwu, et al Experimental research on seismic behavior of SC beam to RC column connection[J]. Journal of Building Structures, 2008, (1): 70- 74
[26]   LI W, YE H, WANG Q, et al Experimental study on the seismic performance of demountable RCS joints[J]. Journal of Building Engineering, 2022, 49: 104082
doi: 10.1016/j.jobe.2022.104082
[27]   李国强, 段炼, 陆烨, 等 H型钢梁与矩形钢管柱外伸式端板单向螺栓连接节点承载力试验与理论研究[J]. 建筑结构学报, 2015, 36 (9): 91- 100
LI Guoqiang, DUAN Lian, LU Ye, et al Experimental and theoretical study of bearing capacity for extended endplate connections between rectangular tubular columns and H-shaped beams with single direction bolts[J]. Journal of Building Engineering, 2015, 36 (9): 91- 100
[28]   中华人民共和国国家标准. 金属材料室温拉伸试验方法: GB/T228—2002 [S]. 北京: 中国标准出版社, 2002.
[29]   中国工程建设标准化协会. 约束混凝土柱组合梁框架结构技术规程: CECS347—2013 [S]. 北京: 中国建筑工业出版社, 2013.
[30]   PARRA-MONTESINOS G, WIGHT J K Modeling shear behavior of hybrid RCS beam-column connections[J]. Journal of Structural Engineering, 2001, 127 (1): 3- 11
doi: 10.1061/(ASCE)0733-9445(2001)127:1(3)
[1] Guo-qing XIE,Mi WANG,De-wen KONG. Seismic performance of steel frame with new high strength silicate wallboard[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1402-1409.
[2] Zhi-an JIAO,Jian-peng WEI,Yang GUO,Liang-jun DAI,Li-min TIAN. Experimental study on seismic performance of new earthquake-resilient semi-rigid joint[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1090-1099.
[3] Zhen-yang SHE,Ya-le LI,Xue-hong LI,Xiu-li XU,Jing-kai LIU. Investigation on seismic performance of thin-walled high piers with rocking self-centering double-limb with energy-consuming tie beam[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 977-987.
[4] Hai-bo LU,Guang-tai ZHANG,Shi-tuo LIU,Xue-fan LI,Xia HAN. Seismic behavior of polypropylene fiber concrete column in saline soil environment[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 111-121.
[5] Ming-ke DENG,Meng-na JIN,Li-ying GUO,Fu-dong MA,Hua-zheng LIU. Experimental study on seismic performance of ultra-high performance concrete connected precast columns[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 1995-2006.
[6] Tong LI,Xin-wu WANG,Qiang SHI,xin BU,Hai-su SUN. Seismic performance of replaceable eccentrically braced steel frame[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1725-1733.
[7] Shuai-ke FENG,Zheng-xing GUO,Lu-yao NI,Guo-jian LI,Chang-yi GONG,Chao XIE,Jian-zheng MAN. Experimental study on seismic performance of joints connecting concrete-filled steel tube columns and hybrid beams[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1464-1472.
[8] Shui-guang TONG,Jia-zhi MIAO,Zhe-ming TONG,Shun HE,Shu-feng XIANG,Xiang-hui SHUAI. Finite element analysis and optimization for static and dynamic characteristics of diesel forklift frame[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1637-1646.
[9] YIN Shi-ping, LI Yao,YANG Yang, YE Tao. Influencing factors of seismic performance of RC columns strengthened with textile reinforced concrete[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(5): 904-913.
[10] HAN Dong, BU Xin, WANG Xin wu, JIANG Cang ru. Experiment on seismic performance of spatial beam to corner column connection with T-stub[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(2): 287-296.
[11] LI Ying-min, YANG Long, LIU Shuo-yu, LUO Wen-wen. Method of failure mode evaluation of structure based on seismic resilience index[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(11): 2197-2206.
[12] YU Zhi-wu, PENG Xiao-dan,GUO Wei, PENG Miao-pei. Seismic performance of precast concrete shear wall with U-type reinforcements ferrule connection[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(5): 975-984.