|
|
Structural characteristics of pozzolanic reaction products of cemented soil |
Fei XU1( ),Jinyu GE1,2,Hua WEI1,Jiahui LIANG1,Huaisen LI1,Xuesong HAN1 |
1. Materials and Structural Engineering Department, Nanjing Hydraulic Research Institute, Nanjing 210029, China 2. College of Water Conservancy and Hydropower, Hohai University, Nanjing 210024, China |
|
|
Abstract In order to elucidate the formation mechanism of the pozzolanic reaction products in cemented soil, the model soils were prepared with quartz powder, bentonite (mass fraction of montmorillonite is 67%) and kaolin (mass fraction of kaolinite is 40%), and the plain cemented soils and NaOH or KOH activated cemented soils were cast under an initial porosity of 3%. The structural characteristics of the pozzolanic reaction products in different cemented soil systems were explored using the combined techniques of XRD and 29Si NMR. Results show that Ca2+ is the critical ion in constituting the structure of various reaction products in cemented soil; the formation of hydrated silicate (M—S—H), hydrated aluminate (M—A—H), and hydrated aluminosilicate (M—A—S—H) gel with high alumina-silica ratio during the pozzolanic reaction are promoted by the NaOH addition, while the formation of M—A—S—H structures with low alumina-silica ratio and elongated chain are promoted by the KOH addition (M=Na, K, Ca). Regarding the effects of clay types, the M—A—S—H structures are prone to form in the cemented kaolin during the pozzolanic reaction, and the montmorillonite with larger interlayer spacing and the 1∶1 type aluminosilicate structures are produced in the cemented bentonite.
|
Received: 07 November 2023
Published: 18 January 2025
|
|
Fund: 国家自然科学基金资助项目(52109161);中国博士后科学基金资助项目(2021M691630). |
水泥固化土火山灰反应产物的结构特性
选取蒙脱土(蒙脱石质量分数为67%)、高岭土(高岭石质量分数为40%)以及石英粉配制人工土,制备初始孔隙率为3%的水泥固化土(水泥土)和掺入NaOH或KOH的改性水泥土. 联用X射线衍射技术及29Si核磁共振技术解析不同水泥土体系下火山灰反应产物的结构特性,揭示水泥土火山灰反应产物的生成机理. 结果表明,Ca2+是组成水泥土中各类反应产物结构的关键离子;掺入NaOH时,火山灰反应向生成水化硅酸盐(M—S—H)、水化铝酸盐(M—A—H)及高铝硅比的水化铝硅酸盐(M—A—S—H)凝胶发展;掺入KOH时,火山灰反应向生成低铝硅比长链状M—A—S—H结构发展(M=Na、K、Ca). 固化高岭土发生火山灰反应易生成M—A—S—H结构,固化蒙脱土易生成层间距较大的蒙脱石以及1∶1型铝硅酸盐结构.
关键词:
水泥土,
火山灰反应,
微观结构,
29Si 核磁共振,
X射线衍射
|
|
[1] |
任建飞, 周佳锦, 龚晓南, 等 方桩-水泥土接触面摩擦特性试验研究[J]. 浙江大学学报: 工学版, 2023, 57 (7): 1374- 1381 REN Jianfei, ZHOU Jiajin, GONG Xiaonan, et al Experimental study on frictional capacity of square pile-cemented soil interface[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (7): 1374- 1381
|
|
|
[2] |
徐菲, 蔡跃波, 钱文勋, 等 脂肪族离子固化剂改性水泥土的机理研究[J]. 岩土工程学报, 2019, 41 (9): 1679- 1687 XU Fei, CAI Yuebo, QIAN Wenxun, et al Mechanism of cemented soil modified by aliphatic ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41 (9): 1679- 1687
doi: 10.11779/CJGE201909012
|
|
|
[3] |
吴萌, 姬永生, 陈晓峰, 等 超细粉煤灰对碳硫硅钙石型硫酸盐破坏的影响[J]. 浙江大学学报: 工学版, 2016, 50 (8): 1479- 1485 WU Meng, JI Yongsheng, CHEN Xiaofeng, et al Effect of superfine fly ash on thaumasite form of sulfate attack[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (8): 1479- 1485
|
|
|
[4] |
李斯臣, 杨俊杰, 武亚磊, 等 水泥固化软土抗拉特性研究[J]. 中南大学学报: 自然科学版, 2022, 53 (7): 2619- 2632 LI Sichen, YANG Junjie, WU Yalei, et al Research on tensile characteristics of cement-treated soft soil[J]. Journal of Central South University: Science and Technology, 2022, 53 (7): 2619- 2632
|
|
|
[5] |
SUKMAK G, SUKMAK P, HORPIBULSUK S, et al Generalized strength prediction equation for cement stabilized clayey soils[J]. Applied Clay Science, 2023, 231: 106761
doi: 10.1016/j.clay.2022.106761
|
|
|
[6] |
王志良, 王竟宇, 申林方, 等 红黏土置换作用对水泥固化泥炭土强度的影响[J]. 建筑材料学报, 2019, 22 (1): 87- 93 WANG Zhiliang, WANG Jingyu, SHEN Linfang, et al Effect of red clay replacement on strength of cement stabilized peaty soil[J]. Journal and Building Materials, 2019, 22 (1): 87- 93
doi: 10.3969/j.issn.1007-9629.2019.01.013
|
|
|
[7] |
项国圣, 方圆, 徐永福 阳离子交换对高庙子钠基膨润土膨胀性能的影响[J]. 浙江大学学报: 工学版, 2017, 51 (5): 931- 936 XIANG Guosheng, FANG Yuan, XU Yongfu Swelling characteristics of GMZ01 bentonite affected by cation exchange reaction[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (5): 931- 936
|
|
|
[8] |
KHALIFA A Z, CIZER Ö, PONTIKES Y, et al Advances in alkali-activation of clay minerals[J]. Cement and Concrete Research, 2020, 132: 106050
doi: 10.1016/j.cemconres.2020.106050
|
|
|
[9] |
MARSH A, HEATH A, PATUREAU P, et al Phase formation behaviour in alkali activation of clay mixtures[J]. Applied Clay Science, 2019, 175: 10- 21
doi: 10.1016/j.clay.2019.03.037
|
|
|
[10] |
WU J, DENG Z, DENG Y, et al Interaction between cement clinker constituents and clay minerals and their influence on the strength of cement-based stabilized soft clay[J]. Canadian Geotechnical Journal, 2022, 59 (6): 889- 900
doi: 10.1139/cgj-2021-0194
|
|
|
[11] |
ABDULLAH H H, SHAHIN M A, WALSKE M L, et al Systematic approach to assessing the applicability of fly-ash-based geopolymer for clay stabilization[J]. Canadian Geotechnical Journal, 2020, 57 (9): 1356- 1368
doi: 10.1139/cgj-2019-0215
|
|
|
[12] |
FENG B, LIU H, LI Y, et al AFM measurements of Hofmeister effects on clay mineral particle interaction forces[J]. Applied Clay Science, 2020, 186: 105443
doi: 10.1016/j.clay.2020.105443
|
|
|
[13] |
PAPA E, MEDRI V, AMARI S, et al Zeolite-geopolymer composite materials: production and characterization[J]. Journal of Cleaner Production, 2018, 171 (10): 76- 84
|
|
|
[14] |
SAVAGE D, WALKER C, ARTHUR R, et al Alteration of bentonite by hyperalkaline fluids: a review of the role of secondary minerals[J]. Physics and Chemistry of the Earth, 2007, 32 (1/2/3/4/5/6/7): 287- 297
doi: 10.1016/j.pce.2005.08.048
|
|
|
[15] |
倪航天, 黄煜镔 固化土微观测试评价方法述评[J]. 材料导报, 2021, 35 (9): 09168- 09173 NI Hangtian, HUANG Yubin Review on microstructure evaluation methods of solidified soil[J]. Materials Reports, 2021, 35 (9): 09168- 09173
|
|
|
[16] |
TONELLI M, MARTINI F, CALUCCI L, et al Structural characterization of magnesium silicate hydrate: towards the design of eco-sustainable cements[J]. Dalton Transactions, 2016, 45 (8): 3294- 3304
doi: 10.1039/C5DT03545G
|
|
|
[17] |
BROUGH A R, DOBSON C M, RICHARDSON I G, et al Application of selective 29Si isotopic enrichment to studies of the structure of calcium silicate hydrate (C-S-H) gels[J]. Journal of the American Ceramic Society, 1994, 77 (2): 593- 596
doi: 10.1111/j.1151-2916.1994.tb07034.x
|
|
|
[18] |
MARTINI F, TONELLI M, GEPPI M, et al Hydration of MgO/SiO2 and Portland cement mixtures: a structural investigation of the hydrated phases by means of X-ray diffraction and solid state NMR spectroscopy[J]. Cement and Concrete Research, 2017, 102: 60- 67
doi: 10.1016/j.cemconres.2017.08.029
|
|
|
[19] |
SKIBSTED J, ANDERSEN M D The effect of alkali ions on the incorporation of aluminum in the calcium silicate hydrate (C—S—H) phase resulting from Portland cement hydration studied by 29Si MAS NMR[J]. Journal of the American Ceramic Society, 2013, 96 (2): 651- 656
doi: 10.1111/jace.12024
|
|
|
[20] |
GARCÍA-LODEIRO I, CHERFA N, ZIBOUCHE F, et al The role of aluminium in alkali-activated bentonites[J]. Materials and Structures, 2015, 48 (3): 585- 597
doi: 10.1617/s11527-014-0447-8
|
|
|
[21] |
HAN Z, YANG H, BU M, et al A molecular dynamics study on the structural and mechanical properties of pyrophyllite and m-montmorillonites (m=Na, K, Ca, and Ba)[J]. Chemical Physics Letters, 2022, 803: 139848
doi: 10.1016/j.cplett.2022.139848
|
|
|
[22] |
WANG J, GAO C, TANG J, et al The multi-scale mechanical properties of calcium-silicate-hydrate[J]. Cement and Concrete Composites, 2023, 140: 105097
doi: 10.1016/j.cemconcomp.2023.105097
|
|
|
[23] |
陈宝, 张会新, 陈萍 高碱溶液对高庙子膨润土侵蚀作用的研究[J]. 岩土工程学报, 2013, 35 (1): 181- 186 CHEN Bao, ZHANG Huixin, CHEN Ping Erosion effect of hyper-alkaline solution on Gaomiaozi bentonite[J]. Chinese Journal of Geotechnical Engineering, 2013, 35 (1): 181- 186
|
|
|
[24] |
REYES C A R, WILLIAMS C, ALARCÓN O M C Nucleation and growth process of sodalite and cancrinite from kaolinite-rich clay under low-temperature hydrothermal conditions[J]. Materials Research, 2013, 16 (2): 424- 438
doi: 10.1590/S1516-14392013005000010
|
|
|
[25] |
PHAIR J W, VAN DEVENTER J S J, SMITH J D Mechanism of polysialation in the incorporation of zirconia into fly ash-based geopolymers[J]. Industrial and Engineering Chemistry Research, 2000, 39 (8): 2925- 2934
doi: 10.1021/ie990929w
|
|
|
[26] |
徐菲, 韦华, 钱文勋, 等 水泥土组成矿物的热重-热力学模拟联用分析[J]. 建筑材料学报, 2022, 25 (4): 424- 433 XU Fei, WEI Hua, QIAN Wenxun, et al Compositional minerals of cemented soil by combined thermogravimetry and thermodynamic modelling[J]. Journal and Building Materials, 2022, 25 (4): 424- 433
doi: 10.3969/j.issn.1007-9629.2022.04.014
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|