Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (1): 167-176    DOI: 10.3785/j.issn.1008-973X.2025.01.016
    
Structural characteristics of pozzolanic reaction products of cemented soil
Fei XU1(),Jinyu GE1,2,Hua WEI1,Jiahui LIANG1,Huaisen LI1,Xuesong HAN1
1. Materials and Structural Engineering Department, Nanjing Hydraulic Research Institute, Nanjing 210029, China
2. College of Water Conservancy and Hydropower, Hohai University, Nanjing 210024, China
Download: HTML     PDF(2418KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to elucidate the formation mechanism of the pozzolanic reaction products in cemented soil, the model soils were prepared with quartz powder, bentonite (mass fraction of montmorillonite is 67%) and kaolin (mass fraction of kaolinite is 40%), and the plain cemented soils and NaOH or KOH activated cemented soils were cast under an initial porosity of 3%. The structural characteristics of the pozzolanic reaction products in different cemented soil systems were explored using the combined techniques of XRD and 29Si NMR. Results show that Ca2+ is the critical ion in constituting the structure of various reaction products in cemented soil; the formation of hydrated silicate (M—S—H), hydrated aluminate (M—A—H), and hydrated aluminosilicate (M—A—S—H) gel with high alumina-silica ratio during the pozzolanic reaction are promoted by the NaOH addition, while the formation of M—A—S—H structures with low alumina-silica ratio and elongated chain are promoted by the KOH addition (M=Na, K, Ca). Regarding the effects of clay types, the M—A—S—H structures are prone to form in the cemented kaolin during the pozzolanic reaction, and the montmorillonite with larger interlayer spacing and the 1∶1 type aluminosilicate structures are produced in the cemented bentonite.



Key wordscemented soil      pozzolanic reaction      microstructure      29Si NMR      XRD     
Received: 07 November 2023      Published: 18 January 2025
CLC:  TU 41  
Fund:  国家自然科学基金资助项目(52109161);中国博士后科学基金资助项目(2021M691630).
Cite this article:

Fei XU,Jinyu GE,Hua WEI,Jiahui LIANG,Huaisen LI,Xuesong HAN. Structural characteristics of pozzolanic reaction products of cemented soil. Journal of ZheJiang University (Engineering Science), 2025, 59(1): 167-176.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.01.016     OR     https://www.zjujournals.com/eng/Y2025/V59/I1/167


水泥固化土火山灰反应产物的结构特性

选取蒙脱土(蒙脱石质量分数为67%)、高岭土(高岭石质量分数为40%)以及石英粉配制人工土,制备初始孔隙率为3%的水泥固化土(水泥土)和掺入NaOH或KOH的改性水泥土. 联用X射线衍射技术及29Si核磁共振技术解析不同水泥土体系下火山灰反应产物的结构特性,揭示水泥土火山灰反应产物的生成机理. 结果表明,Ca2+是组成水泥土中各类反应产物结构的关键离子;掺入NaOH时,火山灰反应向生成水化硅酸盐(M—S—H)、水化铝酸盐(M—A—H)及高铝硅比的水化铝硅酸盐(M—A—S—H)凝胶发展;掺入KOH时,火山灰反应向生成低铝硅比长链状M—A—S—H结构发展(M=Na、K、Ca). 固化高岭土发生火山灰反应易生成M—A—S—H结构,固化蒙脱土易生成层间距较大的蒙脱石以及1∶1型铝硅酸盐结构.


关键词: 水泥土,  火山灰反应,  微观结构,  29Si 核磁共振,  X射线衍射 
Fig.1 XRD-Rietveld result of cement
Fig.2 XRD patterns of raw soils
Fig.3 Deconvolution results of 29Si NMR spectra for raw soils
样品dWL/%WP/%IP
高岭土2.627.716.311.4
蒙脱土2.4121.126.394.8
Tab.1 Basic physical indicators of test soil samples
水泥土命名土壤类型wB/%mS/gmC/g
未改性Mt7.5蒙脱土7.592.57.5
Mt15蒙脱土15.085.015.0
Mt25蒙脱土25.075.025.0
Ka7.5高岭土7.592.57.5
Ka15高岭土15.085.015.0
Ka25高岭土25.075.025.0
碱改性Mt7.5N蒙脱土7.5NaOH92.57.5
Mt7.5K蒙脱土KOH
Ka7.5N高岭土NaOH
Ka7.5K高岭土KOH
Mt25N蒙脱土25.0NaOH75.025.0
Mt25K蒙脱土KOH
Ka25N高岭土NaOH
Ka25K高岭土KOH
Tab.2 Mix proportions for cemented soil
Fig.4 Cemented soil samples after molding
聚合形式$-\delta $化学基团代表矿物
Q066~73单硅酸盐中孤立的硅氧四面体C3S、C2S
Q173~82二聚体或高聚体中直链末端的硅氧四面体
Q282~88长链中的硅氧四面体C—S—H、M—A—S—H及M—S—H
Q388~98层中或支链位置上的硅氧四面体${\mathrm{Q}}_{\mathrm{a}}^3 $:高岭石,化学位移约为?91[15]${\mathrm{Q}}_{\mathrm{b}}^3 $:蒙脱石,化学位移约为?93[9]
Q498~129三维网状结构中的硅氧四面体石英[15]
Tab.3 NMR spectra interpretation
Fig.5 Influence of cement mass fraction on XRD patterns of cemented soil samples
Fig.6 Deconvolution results of 29Si NMR spectra for unmodified cemented soil with different cement mass fraction
样品编号I(Qn)/%I(Q2(II))
/I(Q2(I))
MCL
Q0${\mathrm{Q}}_{\mathrm{a}}^1 $${\mathrm{Q}}_{\mathrm{b}}^1 $Q2(I)Q2(II)${\mathrm{Q}}_{\mathrm{a}}^3 $${\mathrm{Q}}_{\mathrm{b}}^3 $Q4
Mt7.50.00.01.02.08.771.317.04.323.8
Mt150.00.02.13.719.462.812.05.223.6
Mt252.30.012.45.221.949.19.24.26.4
Ka7.51.00.04.14.66.062.022.31.37.2
Ka151.32.410.48.99.645.521.91.14.9
Ka254.26.612.610.513.335.417.51.34.5
Tab.4 Characterization results of silicon polymeric states in unmodified cemented soil samples obtained from deconvolution of 29Si NMR spectra
Fig.7 Microscopic phase characterization and structural analysis of alkali-activated cemented bentonite samples
样品编号I(Qn)/%I(Q2(II))
/I(Q2(I))
MCL
Q0Q1Q2(I)Q2(II)${\mathrm{Q}}_{\mathrm{a}}^3 $${\mathrm{Q}}_{\mathrm{b}}^3 $${\mathrm{Q}}_{\mathrm{c}}^3 $Q4
Mt7.5N2.73.65.613.025.423.422.51.92.312.5
Mt25N15.036.01.324.816.25.50.01.319.23.5
Mt7.5K2.42.39.210.221.642.110.91.31.118.9
Mt25K7.114.59.938.015.214.70.00.53.88.6
Tab.5 Characterization results of silicon polymeric states in alkali-activated cemented bentonite samples obtained from deconvolution of 29Si NMR spectra
Fig.8 Microscopic phase characterization and structural analysis of alkali-activated cemented kaolin samples
样品编号I(Qn)/%I(Q2(II))
/I(Q2(I))
MCL
Q0${\mathrm{Q}}_{\mathrm{a}}^1 $${\mathrm{Q}}_{\mathrm{b}}^1 $Q2(I)Q2(II)${\mathrm{Q}}_{\mathrm{a}}^3 $Q4
Ka7.5N8.08.510.811.931.314.914.62.66.5
Ka25N14.527.25.111.730.32.58.62.64.6
Ka7.5K6.05.90.019.416.534.317.90.914.1
Ka25K5.912.00.029.925.317.09.80.911.2
Tab.6 Characterization results of silicon polymeric states in alkali-activated cemented kaolin samples obtained from deconvolution of 29Si NMR spectra
[1]   任建飞, 周佳锦, 龚晓南, 等 方桩-水泥土接触面摩擦特性试验研究[J]. 浙江大学学报: 工学版, 2023, 57 (7): 1374- 1381
REN Jianfei, ZHOU Jiajin, GONG Xiaonan, et al Experimental study on frictional capacity of square pile-cemented soil interface[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (7): 1374- 1381
[2]   徐菲, 蔡跃波, 钱文勋, 等 脂肪族离子固化剂改性水泥土的机理研究[J]. 岩土工程学报, 2019, 41 (9): 1679- 1687
XU Fei, CAI Yuebo, QIAN Wenxun, et al Mechanism of cemented soil modified by aliphatic ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41 (9): 1679- 1687
doi: 10.11779/CJGE201909012
[3]   吴萌, 姬永生, 陈晓峰, 等 超细粉煤灰对碳硫硅钙石型硫酸盐破坏的影响[J]. 浙江大学学报: 工学版, 2016, 50 (8): 1479- 1485
WU Meng, JI Yongsheng, CHEN Xiaofeng, et al Effect of superfine fly ash on thaumasite form of sulfate attack[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (8): 1479- 1485
[4]   李斯臣, 杨俊杰, 武亚磊, 等 水泥固化软土抗拉特性研究[J]. 中南大学学报: 自然科学版, 2022, 53 (7): 2619- 2632
LI Sichen, YANG Junjie, WU Yalei, et al Research on tensile characteristics of cement-treated soft soil[J]. Journal of Central South University: Science and Technology, 2022, 53 (7): 2619- 2632
[5]   SUKMAK G, SUKMAK P, HORPIBULSUK S, et al Generalized strength prediction equation for cement stabilized clayey soils[J]. Applied Clay Science, 2023, 231: 106761
doi: 10.1016/j.clay.2022.106761
[6]   王志良, 王竟宇, 申林方, 等 红黏土置换作用对水泥固化泥炭土强度的影响[J]. 建筑材料学报, 2019, 22 (1): 87- 93
WANG Zhiliang, WANG Jingyu, SHEN Linfang, et al Effect of red clay replacement on strength of cement stabilized peaty soil[J]. Journal and Building Materials, 2019, 22 (1): 87- 93
doi: 10.3969/j.issn.1007-9629.2019.01.013
[7]   项国圣, 方圆, 徐永福 阳离子交换对高庙子钠基膨润土膨胀性能的影响[J]. 浙江大学学报: 工学版, 2017, 51 (5): 931- 936
XIANG Guosheng, FANG Yuan, XU Yongfu Swelling characteristics of GMZ01 bentonite affected by cation exchange reaction[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (5): 931- 936
[8]   KHALIFA A Z, CIZER Ö, PONTIKES Y, et al Advances in alkali-activation of clay minerals[J]. Cement and Concrete Research, 2020, 132: 106050
doi: 10.1016/j.cemconres.2020.106050
[9]   MARSH A, HEATH A, PATUREAU P, et al Phase formation behaviour in alkali activation of clay mixtures[J]. Applied Clay Science, 2019, 175: 10- 21
doi: 10.1016/j.clay.2019.03.037
[10]   WU J, DENG Z, DENG Y, et al Interaction between cement clinker constituents and clay minerals and their influence on the strength of cement-based stabilized soft clay[J]. Canadian Geotechnical Journal, 2022, 59 (6): 889- 900
doi: 10.1139/cgj-2021-0194
[11]   ABDULLAH H H, SHAHIN M A, WALSKE M L, et al Systematic approach to assessing the applicability of fly-ash-based geopolymer for clay stabilization[J]. Canadian Geotechnical Journal, 2020, 57 (9): 1356- 1368
doi: 10.1139/cgj-2019-0215
[12]   FENG B, LIU H, LI Y, et al AFM measurements of Hofmeister effects on clay mineral particle interaction forces[J]. Applied Clay Science, 2020, 186: 105443
doi: 10.1016/j.clay.2020.105443
[13]   PAPA E, MEDRI V, AMARI S, et al Zeolite-geopolymer composite materials: production and characterization[J]. Journal of Cleaner Production, 2018, 171 (10): 76- 84
[14]   SAVAGE D, WALKER C, ARTHUR R, et al Alteration of bentonite by hyperalkaline fluids: a review of the role of secondary minerals[J]. Physics and Chemistry of the Earth, 2007, 32 (1/2/3/4/5/6/7): 287- 297
doi: 10.1016/j.pce.2005.08.048
[15]   倪航天, 黄煜镔 固化土微观测试评价方法述评[J]. 材料导报, 2021, 35 (9): 09168- 09173
NI Hangtian, HUANG Yubin Review on microstructure evaluation methods of solidified soil[J]. Materials Reports, 2021, 35 (9): 09168- 09173
[16]   TONELLI M, MARTINI F, CALUCCI L, et al Structural characterization of magnesium silicate hydrate: towards the design of eco-sustainable cements[J]. Dalton Transactions, 2016, 45 (8): 3294- 3304
doi: 10.1039/C5DT03545G
[17]   BROUGH A R, DOBSON C M, RICHARDSON I G, et al Application of selective 29Si isotopic enrichment to studies of the structure of calcium silicate hydrate (C-S-H) gels[J]. Journal of the American Ceramic Society, 1994, 77 (2): 593- 596
doi: 10.1111/j.1151-2916.1994.tb07034.x
[18]   MARTINI F, TONELLI M, GEPPI M, et al Hydration of MgO/SiO2 and Portland cement mixtures: a structural investigation of the hydrated phases by means of X-ray diffraction and solid state NMR spectroscopy[J]. Cement and Concrete Research, 2017, 102: 60- 67
doi: 10.1016/j.cemconres.2017.08.029
[19]   SKIBSTED J, ANDERSEN M D The effect of alkali ions on the incorporation of aluminum in the calcium silicate hydrate (C—S—H) phase resulting from Portland cement hydration studied by 29Si MAS NMR[J]. Journal of the American Ceramic Society, 2013, 96 (2): 651- 656
doi: 10.1111/jace.12024
[20]   GARCÍA-LODEIRO I, CHERFA N, ZIBOUCHE F, et al The role of aluminium in alkali-activated bentonites[J]. Materials and Structures, 2015, 48 (3): 585- 597
doi: 10.1617/s11527-014-0447-8
[21]   HAN Z, YANG H, BU M, et al A molecular dynamics study on the structural and mechanical properties of pyrophyllite and m-montmorillonites (m=Na, K, Ca, and Ba)[J]. Chemical Physics Letters, 2022, 803: 139848
doi: 10.1016/j.cplett.2022.139848
[22]   WANG J, GAO C, TANG J, et al The multi-scale mechanical properties of calcium-silicate-hydrate[J]. Cement and Concrete Composites, 2023, 140: 105097
doi: 10.1016/j.cemconcomp.2023.105097
[23]   陈宝, 张会新, 陈萍 高碱溶液对高庙子膨润土侵蚀作用的研究[J]. 岩土工程学报, 2013, 35 (1): 181- 186
CHEN Bao, ZHANG Huixin, CHEN Ping Erosion effect of hyper-alkaline solution on Gaomiaozi bentonite[J]. Chinese Journal of Geotechnical Engineering, 2013, 35 (1): 181- 186
[24]   REYES C A R, WILLIAMS C, ALARCÓN O M C Nucleation and growth process of sodalite and cancrinite from kaolinite-rich clay under low-temperature hydrothermal conditions[J]. Materials Research, 2013, 16 (2): 424- 438
doi: 10.1590/S1516-14392013005000010
[25]   PHAIR J W, VAN DEVENTER J S J, SMITH J D Mechanism of polysialation in the incorporation of zirconia into fly ash-based geopolymers[J]. Industrial and Engineering Chemistry Research, 2000, 39 (8): 2925- 2934
doi: 10.1021/ie990929w
[26]   徐菲, 韦华, 钱文勋, 等 水泥土组成矿物的热重-热力学模拟联用分析[J]. 建筑材料学报, 2022, 25 (4): 424- 433
XU Fei, WEI Hua, QIAN Wenxun, et al Compositional minerals of cemented soil by combined thermogravimetry and thermodynamic modelling[J]. Journal and Building Materials, 2022, 25 (4): 424- 433
doi: 10.3969/j.issn.1007-9629.2022.04.014
[1] Hui CHENG,Hongyuan FU,Ling ZENG,Xiaowei YU,Jintao LUO,Jie LIU. Mechanical properties and constitutive model of silty mudstone considering drying-wetting cycle path[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(9): 1912-1922.
[2] Yongchao WANG,Zhengying WEI,Pengfei HE. Structure and property of 2219 aluminum alloy fabricated by droplet+arc additive manufacturing[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(8): 1585-1595.
[3] Xinshan ZHUANG,Benchi YANG,Gaoliang TAO. Dynamic characteristics and micro-mechanisms of coastal cement soil modified by nano-Al2O3[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(7): 1457-1466.
[4] Ze-kai MIAO,Da-ren ZHANG,Gang MA,Yu-xiong ZOU,Yuan CHEN,Wei ZHOU,Yu-xuan XIAO. Microscopic dynamics of sand particles based on X-ray computed tomography and in-situ triaxial compression[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(8): 1597-1606.
[5] Jian-fei REN,Jia-jin ZHOU,Xiao-nan GONG,Jian-lin YU. Experimental study on frictional capacity of square pile-cemented soil interface[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1374-1381.
[6] Yan LAN,Qi GU,Yu PENG,Qiang ZENG,Zhidong ZHANG. Microstructure of early-age calcium sulphoaluminate and ordinary Portland cement paste cured under different CO2 pressures[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(12): 2454-2462.
[7] Hai-chao SUN,Wen-jun WANG,Dao-sheng LING. Mechanical properties and microstructure of solidified soil with low cement content[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 530-538.
[8] Dong-ming YAN,Zhi-hao HUANG,Gong CHEN,Hao QIAN,Jia-hua DENG,Yi LIU. Study on corrosion resistance of low-temperature sintered chemically reactive enamel coated rebars[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 56-63.
[9] Yue-han XIE,Chao-sheng TANG,Bo LIU,Qing CHENG,Li-yang YIN,Ning-jun JIANG,Bin SHI. Water stability improvement of clayey soil based on microbial induced calcite precipitation[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1438-1447.
[10] Xian-tai JI,Shi-feng WEN,Qing-song WEI,Yan ZHOU,Zhi-ping CHEN. Effect of quenching treatment on performance of S136 steel fabricated via selective laser melting[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 664-670.
[11] Liang-gui YU,Jian ZHOU,Xiao-gui WEN,Jie XU,Ling-hui LUO. Factors influencing permeability anisotropy of remolded kaolin[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 275-283.
[12] CHEN Jing hao, HUANG Jian xin, LU Sheng yong, LI Xiao dong, YAN Jian hua. Microstructure and pollutant analysis of carbon black produced by municipal solid waste open-burning[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(10): 1849-1854.
[13] XU Ri-qing, XU Li-yang, DENG Yi-wen, ZHU Yi-hong. Experimental study on soft clay contact area based on SEM and IPP[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(8): 1417-1425.
[14] ZHOU Jia-jin, GONG Xiao-nan, WANG Kui-hua, ZHANG Ri-hong, YAN Tian-long. Model test on load transfer mechanism of a static drill rooted nodular pile[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(3): 531-537.
[15] ZHOU Jia jin, WANG Kui hua, GONG Xiao nan, ZHANG Ri hong,YAN Tian long. Numerical simulation on behavior of static drill rooted pile under tension[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(11): 2135-2141.