Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (9): 1912-1922    DOI: 10.3785/j.issn.1008-973X.2024.09.016
    
Mechanical properties and constitutive model of silty mudstone considering drying-wetting cycle path
Hui CHENG1(),Hongyuan FU1,Ling ZENG1,Xiaowei YU1,Jintao LUO1,Jie LIU2,*()
1. School of Civil Engineering, Changsha University of Science and Technology, Changsha 410114, China
2. School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410114, China
Download: HTML     PDF(3045KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Low confining pressure triaxial compression tests and scanning electron microscopy (SEM) on silty mudstone were carried out under different drying-wetting cycle paths, respectively, in order to analyze the shallow instability mechanism of silty mudstone slopes in the hot and humid regions of southern China. A damage constitutive model for silty mudstone considering the influence of drying-wetting cycle paths was established based on the continuum damage mechanical theory and the modified Drucker-Prager (D-P) strength criterion. Results showed that the stress-strain curves of silty mudstone manifested non-linear characteristics, and could be divided into the compaction stage, elastic stage, plastic yield stage, post-peak failure stage, and residual strength stage. The compaction stage and the plastic yield stage were prolonged, and the peak strength, deformation modulus, cohesion and internal friction angle damage of silty mudstone gradually increased, with the increase in drying-wetting cycle times or drying-wetting cycle amplitudes. The sensitivity of the mechanical parameters of silty mudstone was as follows: deformation modulus>cohesion>internal friction angle>peak strength. The porosity of silty mudstone kept growing gradually due to erosion and dissolution. The failure mode of silty mudstone specimen evolved from cone-splitting failure, mainly in the form of shear failure, to shear failure. The constructed rock damage constitutive model can consider the influence of drying-wetting cycle paths and reflect the deformation characteristics of the full stress-strain curve of the silty mudstone.



Key wordssilty mudstone      drying-wetting cycle path      mechanical property      microstructure      damage constitutive model     
Received: 08 July 2023      Published: 30 August 2024
CLC:  TU 45  
Fund:  国家自然科学基金资助项目(52108397,52078067,52078066);湖南省自然科学基金资助项目(2022JJ40485);长沙理工大学专业学位研究生“实践创新与创业能力提升计划”资助项目(CLSJCX22037);湖南省水利科技资助项目(XSKJ2022068-26,XSKJ2023059-41).
Corresponding Authors: Jie LIU     E-mail: 2674764965@qq.com;qzclliujie@stu.csust.edu.cn
Cite this article:

Hui CHENG,Hongyuan FU,Ling ZENG,Xiaowei YU,Jintao LUO,Jie LIU. Mechanical properties and constitutive model of silty mudstone considering drying-wetting cycle path. Journal of ZheJiang University (Engineering Science), 2024, 58(9): 1912-1922.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.09.016     OR     https://www.zjujournals.com/eng/Y2024/V58/I9/1912


考虑干湿循环路径的粉砂质泥岩力学特性及本构模型

为了分析南方湿热地区粉砂质泥岩边坡浅层失稳机制,开展不同干湿循环路径下的粉砂质泥岩低围压三轴压缩试验与扫描电镜(SEM)试验. 基于连续损伤理论和修正Drucker-Prager (D-P)强度准则,构建可考虑干湿循环路径影响的粉砂质泥岩损伤本构模型. 结果表明:粉砂质泥岩应力-应变曲线具有非线性特征,可分为压密阶段、弹性阶段、塑性屈服阶段、峰后破坏阶段和残余强度阶段;随干湿循环次数或循环幅度的增加,压密阶段与塑性屈服阶段延长,岩样峰值强度、变形模量、黏聚力和内摩擦角损伤逐渐增大,粉砂质泥岩力学参数敏感度表现为变形模量>黏聚力>内摩擦角>峰值强度;受溶蚀、潜蚀作用,粉砂质泥岩孔隙率不断增大,破坏模式由以剪切破坏形式为主的顶锥-劈裂破坏向剪切破坏演化. 构建的岩石损伤本构模型能考虑干湿循环路径的影响,能较好地反映粉砂质泥岩应力-应变曲线全过程变形特征.


关键词: 粉砂质泥岩,  干湿循环路径,  力学特性,  微观结构,  损伤本构模型 
物理力学指标取值
颗粒密度/(g·cm?3)2.73
毛体积干密度/( g·cm?3)2.30
孔隙率/%15.80
水的质量分数/%11.78
吸水率/%14.34
饱和吸水率/%15.10
抗压强度/MPa18.02
变形模量/GPa35.35
黏聚力/MPa9.50
内摩擦角/(°)6.91
Tab.1 Physical and mechanical properties of silty mudstone
Fig.1 Longitudinal wave velocity distribution of silty mudstone
Fig.2 Drying-wetting cycle paths
Fig.3 Experimental flow chart of silty mudstone under different drying-wetting cycle paths
Fig.4 Stress-strain curves of silty mudstone under different drying-wetting cycle paths
Fig.5 Peak strength and deformation modulus of silty mudstone under different drying-wetting cycle paths
Fig.6 Shear strength index of silty mudstone under different drying-wetting cycle paths
Fig.7 Failure modes of silty mudstone under different drying-wetting cycle paths
Fig.8 Microstructure of silty mudstone under different wet-dry cycle paths
$ {\sigma _3} $/kPaw/%nm0r0$ {\sigma _3} $/kPaw/%nm0r0
1000.01662.3883301050.01332.7119
3000.19043.13413010100.02642.6889
9000.10123.37573010200.02242.5899
10550.15282.6359901050.03593.1221
105100.01652.25539010100.02862.9375
105200.05112.18809010200.14543.0475
30550.04102.8725101550.02152.3597
305100.22053.11561015100.04732.2364
305200.06112.75841015200.01761.9490
90550.22723.5124301550.01762.7627
905100.17053.35363015100.06242.7566
905200.09603.18283015200.11742.6693
101050.10952.4711901550.10563.2852
1010100.02252.28759015100.06743.1364
1010200.20692.38509015200.05742.8579
Tab.2 Parameters of silty mudstone damage model under different drying-wetting cycle paths
Fig.9 Experimental and theoretical curves of silty mudstone under different drying-wetting cycle paths
[1]   YANG X, WANG J, HOU D, et al Effect of dry-wet cycling on the mechanical properties of rocks: a laboratory-scale experimental study[J]. Processes, 2018, 6 (10): 199
doi: 10.3390/pr6100199
[2]   SUN Q, ZHANG Y L Combined effects of salt, cyclic wetting and drying cycles on the physical and mechanical properties of sandstone[J]. Engineering Geology, 2019, 248: 70- 79
doi: 10.1016/j.enggeo.2018.11.009
[3]   邓华锋, 周美玲, 李建林, 等 水–岩作用下红层软岩力学特性劣化规律研究[J]. 岩石力学与工程学报, 2016, 35 (Suppl.2): 3481- 3491
DENG Huafeng, ZHOU Meiling, LI Jianlin, et al Mechanical properties deteriorating change rule research of red-layer soft rock under water-rock interaction[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35 (Suppl.2): 3481- 3491
[4]   ZHANG H, LU K, ZHANG W, et al Quantification and acoustic emission characteristics of sandstone damage evolution under dry-wet cycles[J]. Journal of Building Engineering, 2022, 48: 103996
doi: 10.1016/j.jobe.2022.103996
[5]   MENG Y Y, JING H W, YIN Q, et al Investigation on mechanical and AE characteristics of yellow sandstone undergoing wetting-drying cycles[J]. KSCE Journal of Civil Engineering, 2019, 24 (11): 3267- 3278
[6]   王维, 顾峰, 何刘, 等 水岩循环作用下变质砂岩力学参数劣化试验研究[J]. 水资源与水工程学报, 2022, 33 (2): 179- 185
WANG Wei, GU Feng, HE Liu, et al Experimental study on deteriorating characteristics of metamorphic sandstone mechanical parameters under the effect of wetting-drying cycles[J]. Journal of Water Resources and Water Engineering, 2022, 33 (2): 179- 185
[7]   CHEN X, HE P, QIN Z Strength weakening and energy mechanism of rocks subjected to wet-dry cycles[J]. Geotechnical and Geological Engineering, 2019, 37: 3915- 3923
doi: 10.1007/s10706-019-00881-6
[8]   付宏渊, 蒋煌斌, 邱祥, 等 低应力与覆水环境下单裂隙粉砂质泥岩渗流特性[J]. 岩土力学, 2020, 41 (12): 3840- 3850
FU Hongyuan, JIANG Huangbin, QIU Xiang, et al Seepage characteristics of single-fractured silty mudstone under low stress and overlying water environment[J]. Rock and Soil Mechanics, 2020, 41 (12): 3840- 3850
[9]   曹文贵, 赵明华, 唐学军 岩石破裂过程的统计损伤模拟研究[J]. 岩土工程学报, 2003, 25 (2): 184- 187
CAO Wengui, ZHAO Minghua, TANG Xuejun Study on simulation of statistical damage in the full process of rock failure[J]. Chinese Journal of Geotechnical Engineering, 2003, 25 (2): 184- 187
[10]   LIN H, LIANG L, CHEN Y, et al A damage constitutive model of rock subjected to freeze-thaw cycles based on lognormal distribution[J]. Advances in Civil Engineering, 2021, (1): 6658915
[11]   王辉, 王伟, 朱鹏辉, 等 考虑干湿循环的大理岩统计损伤本构模型[J]. 河南科学, 2020, 38 (6): 909- 915
WANG Hui, WANG Wei, ZHU Penghui, et al Statistical damage constitutive model of marble considering dry-wet cycle[J]. Henan Science, 2020, 38 (6): 909- 915
[12]   KOVARI K, TISA A, EINSTEIN H H, et al. Suggested methods for determining the strength of rock materials in triaxial compression: revised version[J]. International Journal of Rock Mechanics and Mining Sciences , 1983, 20(6): 285−290 .
[13]   中华人民共和国行业标准编写组. 公路工程岩石试验规程: JTG 3430—2020 [S]. 武汉: 人民交通出版社, 2020.
[14]   RINEHART J S, FORTIN J P, BURGIN L. Propagation velocity of longitudinal waves in rocks. Effect of state of stress, stress level of the wave, water content, porosity, temperature, stratification and texture [C]// ARMA US Rock Mechanics/Geomechanics Symposium . Pennsy Ivania: University Park, 1961: ARMA-61-119.
[15]   ROSCOE K H, SCHOFIELD A N, THURAIRAJAH A Yielding of clays in states wetter than critical[J]. Geotechnique, 1963, 13 (3): 211- 240
doi: 10.1680/geot.1963.13.3.211
[16]   FU H, JIANG H, QIU X, et al Seepage characteristics of a fractured silty mudstone under different confining pressures and temperatures[J]. Journal of Central South University, 2020, 27 (7): 1907- 1916
doi: 10.1007/s11771-020-4419-6
[17]   黄震, 胡钊健, 张海, 等 干湿循环下宁明粉砂岩宏微观损伤劣化规律[J]. 科学技术与工程, 2022, 22 (12): 4954- 4961
HUANG Zhen, HU Zhaojian, ZHANG Hai, et al Macro/micro damage degradation law of Ningming siltstone under dry-wet cycles[J]. Science Technology and Engineering, 2022, 22 (12): 4954- 4961
[18]   郝延周, 王铁行, 汪朝, 等 干湿循环作用下压实黄土三轴剪切特性试验研究[J]. 水利学报, 2021, 52 (3): 359- 368
HAO Yanzhou, WANG Tiexing, WANG Chao, et al Experimental study on triaxial shear characteristics of compacted loess under drying and wetting cycles[J]. Journal of Hydraulic Engineering, 2021, 52 (3): 359- 368
[19]   傅晏, 王子娟, 刘新荣, 等 干湿循环作用下砂岩细观损伤演化及宏观劣化研究[J]. 岩土工程学报, 2017, 39 (9): 1653- 1661
FU Yan, WANG Zijuan, LIU Xinrong, et al Meso damage evolution characteristics and macro degradation of sandstone under wetting-drying cycles[J]. Chinese Journal of Geotechnical Engineering, 2017, 39 (9): 1653- 1661
[20]   王伟, 龚传根, 朱鹏辉, 等 大理岩干湿循环力学特性试验研究[J]. 水利学报, 2017, 48 (10): 1175- 1184
WANG Wei, GONG Chuangen, ZHU Penghui, et al Experimental study on mechanical properties of marble under hydraulic weathering coupling[J]. Journal of Hydraulic Engineering, 2017, 48 (10): 1175- 1184
[21]   李克钢, 吴勇, 郑东普 砂岩力学特性对干湿循环效应响应规律的试验研究[J]. 北京理工大学学报, 2013, 33 (10): 1010- 1014
LI Kegang, WU Yong, ZHENG Dongpu Mechanical properties response of sandstone to cyclic drying-wetting effect[J]. Transactions of Beijing Institute of Technology, 2013, 33 (10): 1010- 1014
[22]   黄维辉. 干湿交替作用下砂岩劣化效应研究[EB/OL]. [2023-06-01]. https://kns.cnki.net/kcms2/article/abstract?v=XEQRgWHfXDGBiurakSHKJvKgdjaRzHZm74lmNwFDjOpZLV3oTY9p_X4uGbBVf2DUhxvgQbOr7DKDE05ainOKh5hqHxqpwRzea3uGeCxnE92plum41f5BKRAPPHBWNIbSDxbFn-nj6CUwogVPw_6xqg==&uniplatform=NZKPT&language=CHS.
[23]   郑晓卿, 刘建, 卞康, 等 鄂西北页岩饱水软化微观机制与力学特性研究[J]. 岩土力学, 2017, 38 (7): 2022- 2028
ZHENG Xiaoqing, LIU Jian, BIAN Kang, et al Softening micro-mechanism and mechanical properties of water-saturated shale in Northwestern Hubei[J]. Rock and Soil Mechanics, 2017, 38 (7): 2022- 2028
[24]   CHEN X, HE P, QIN Z, et al Statistical damage model of altered granite under dry-wet cycles[J]. Symmetry, 2019, 11 (1): 41
doi: 10.3390/sym11010041
[1] Yongchao WANG,Zhengying WEI,Pengfei HE. Structure and property of 2219 aluminum alloy fabricated by droplet+arc additive manufacturing[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(8): 1585-1595.
[2] Xinshan ZHUANG,Benchi YANG,Gaoliang TAO. Dynamic characteristics and micro-mechanisms of coastal cement soil modified by nano-Al2O3[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(7): 1457-1466.
[3] Ze-kai MIAO,Da-ren ZHANG,Gang MA,Yu-xiong ZOU,Yuan CHEN,Wei ZHOU,Yu-xuan XIAO. Microscopic dynamics of sand particles based on X-ray computed tomography and in-situ triaxial compression[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(8): 1597-1606.
[4] You-jun XU,Yue-kui PANG,Chao ZHANG,Jia-wang KANG,Zheng-dong HUANG. Shear performance of F-type socket joint in rectangular pipe jacking tunnel[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 957-966.
[5] Sheng-qian RUAN,Tie-long WANG,Shi-kun CHEN,Yi LIU,Dong-ming YAN. Effect of PDMS incorporation on property and microstructure of geopolymer[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1302-1309.
[6] Yan LAN,Qi GU,Yu PENG,Qiang ZENG,Zhidong ZHANG. Microstructure of early-age calcium sulphoaluminate and ordinary Portland cement paste cured under different CO2 pressures[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(12): 2454-2462.
[7] Hai-chao SUN,Wen-jun WANG,Dao-sheng LING. Mechanical properties and microstructure of solidified soil with low cement content[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 530-538.
[8] Lei ZHANG,Hai-jun XU,Teng-an ZOU,Xiao-jun XU,Yu-kang CHANG. Modeling and property analysis of underwater vector propulsion system based on nested Z-shafts[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 450-458.
[9] Song-lin YU,Han KE,Liang-tong ZHAN,Tao MENG,Yun-min CHEN,Ce YANG. Engineering properties of excavated soil and analysis of post-construction settlement and capacity for pit landfill[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2364-2376.
[10] Dong-ming YAN,Zhi-hao HUANG,Gong CHEN,Hao QIAN,Jia-hua DENG,Yi LIU. Study on corrosion resistance of low-temperature sintered chemically reactive enamel coated rebars[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 56-63.
[11] Yue-han XIE,Chao-sheng TANG,Bo LIU,Qing CHENG,Li-yang YIN,Ning-jun JIANG,Bin SHI. Water stability improvement of clayey soil based on microbial induced calcite precipitation[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1438-1447.
[12] Xian-tai JI,Shi-feng WEN,Qing-song WEI,Yan ZHOU,Zhi-ping CHEN. Effect of quenching treatment on performance of S136 steel fabricated via selective laser melting[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 664-670.
[13] Liang-gui YU,Jian ZHOU,Xiao-gui WEN,Jie XU,Ling-hui LUO. Factors influencing permeability anisotropy of remolded kaolin[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 275-283.
[14] CHEN Jing hao, HUANG Jian xin, LU Sheng yong, LI Xiao dong, YAN Jian hua. Microstructure and pollutant analysis of carbon black produced by municipal solid waste open-burning[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(10): 1849-1854.
[15] XU Ri-qing, XU Li-yang, DENG Yi-wen, ZHU Yi-hong. Experimental study on soft clay contact area based on SEM and IPP[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(8): 1417-1425.