Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (8): 1585-1595    DOI: 10.3785/j.issn.1008-973X.2024.08.006
    
Structure and property of 2219 aluminum alloy fabricated by droplet+arc additive manufacturing
Yongchao WANG(),Zhengying WEI*(),Pengfei HE
State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710000, China
Download: HTML     PDF(7116KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A new arc additive manufacturing process—droplet+arc additive manufacturing (DAAM) technology was applied to manufacture aluminum alloy samples in order to improve the quality and the efficiency of aluminum alloy. A new droplet generation system (DGS) was applied instead of the conventional wire feeding system, which makes the material addition and arc energy independent of each other. The formed material is 2219 aluminum alloy, and a trace amount of Mg element was added through the DGS. A thin-walled structure was deposited using the DAAM system at a significantly higher deposition rate (160 $ {\mathrm{m}\mathrm{m}}^{3}/\mathrm{s} $) than conventional wire and arc additive manufacturing techniques. The microstructure of the cross section of the thin-walled structure was observed and analyzed. Results showed that the grain morphology of the thin-walled structure was dominated by columnar crystals and exhibited a periodic distribution of inner-layer columnar crystals and inter-layer equiaxed crystals. The average tensile strengths in the horizontal and vertical directions were 455.4 MPa and 417.0 MPa after T6 heat treatment, while the yield strengths were 342.2 MPa and 316.4 MPa, respectively. The comparison results with the previous studies show that the addition of Mg element increases the yield strength of 2219 aluminum alloy, but leads to a corresponding decrease in elongation.



Key words2219 aluminum alloy      arc additive manufacturing      droplet      microstructure      mechanical property     
Received: 24 October 2023      Published: 23 July 2024
CLC:  TG 444  
Fund:  国家自然科学基金资助项目(52275376).
Corresponding Authors: Zhengying WEI     E-mail: wyc0228@stu.xjtu.edu.cn;zywei@mail.xjtu.edu.cn
Cite this article:

Yongchao WANG,Zhengying WEI,Pengfei HE. Structure and property of 2219 aluminum alloy fabricated by droplet+arc additive manufacturing. Journal of ZheJiang University (Engineering Science), 2024, 58(8): 1585-1595.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.08.006     OR     https://www.zjujournals.com/eng/Y2024/V58/I8/1585


熔滴复合电弧增材制造2219铝合金组织与性能

为了提高铝合金电弧增材制造的质量和效率,采用新型的电弧增材制造工艺——熔滴复合电弧增材制造(DAAM)技术来制造铝合金样品. 采用全新的熔滴生成系统(DGS)代替传统的送丝系统,使得材料的添加与电弧能量相互独立. 成形的材料为2219铝合金,通过熔滴系统添加了微量Mg元素. 利用熔滴复合电弧增材制造设备沉积了薄壁结构,沉积速率较传统电弧增材制造技术大幅提升(约为160 mm3/s). 观察和分析薄壁结构截面的微观组织表明,薄壁结构的晶粒形态以柱状晶为主,呈现层内柱状晶和层间等轴晶的周期性分布规律. 经过T6热处理后,试样水平和垂直方向的平均抗拉强度分别为455.4和417.0 MPa,屈服强度分别为342.4和316.4 MPa. 较之前的研究结果对比表明,Mg元素的添加提升了2219铝合金的屈服强度,但导致延伸率降低.


关键词: 2219铝合金,  电弧增材制造,  熔滴,  微观组织,  力学性能 
Fig.1 Schematic diagram of droplet+arc additive manufacturing equipment
Fig.2 Composition diagram of droplet+arc additive manufacturing equipment
w(Cu)w(Mn)w(Mg)w(Zn)w(V)w(Ti)w(Zr)w(Si)w(Fe)w(Al)
注:1)表示剩余的均为Al.
5.8~6.80.2~0.40.20.10.05~0.150.02~0.100.1~0.250.10~0.200.20~0.30Bal.1)
Tab.1 Chemical element composition of 2219 aluminum alloy %
Fig.3 GTA current waveform
参数数值
基值电流IB/A0.5IP
基板温度θB/℃260
移动速度TS/(mm·s?1)8
沉积速率DR/(mm3·s?1)160
电弧脉冲频率farc/Hz10
保护气体积流量qVAr/(L·min?1)15
交流频率/Hz50
液滴直径/mm0.71
液滴频率/Hz500~1 000
坩埚熔体温度/℃700
Tab.2 Main process parameter of thin-walled structure fabricated by droplet+arc additive manufacturing
Fig.4 Characteristic curve of peak current
Fig.5 T6 heat treatment process curve
Fig.6 Schematic diagram of sampling location and geometry of tensile specimen for thin-walled structure
Fig.7 Macromorphology of thin-walled structure
Fig.8 Optical micrographs in transversal section
Fig.9 Schematic diagram of grain morphology evolution and experimental result
Fig.10 EBSD of thin-walled structure in transversal section
Fig.11 EBSD of thin-walled structure in longitudinal section
截面区域0.02% Mg0.2% Mg
dg/μmItdg/μmIt
横截面顶部146.728122.410.63
中部102.522.982.89.47
第2层6412.450.43.85
纵截面中部98.817.7108.211.81
底部41.63.229.83.85
Tab.3 Average grain size and texture intensity of transversal and longitudinal sections under different conditions
Fig.12 SEM image of inter-layer region and inner-layer region of as-deposited sample
Fig.13 SEM image of as-deposited and T6 heat treatment sample in transversal section
Fig.14 EDS map of samples in as-deposited state and after T6 heat-treatment
Fig.15 SEM image of longitudinal section of sample in as-deposited state
Fig.16 XRD map of sample in as-deposited state
Fig.17 Microhardness of thin-walled structure
Fig.18 Tensile property of droplet+arc additive manufacturing sample in horizontal and vertical direction
文献工艺状态水平方向垂直方向
UTS/MPaYS/MPaEL/%UTS/MPaYS/MPaEL/%
文献[24]TIGAD273±7183±42.7±1
文献[24]TIGT6397±4303±55.3±1
文献[25]CMT+RolledAD269±5135±318.8±2265±5131±315.3±2
文献[25]CMT+RolledT6465±6325±513.2±1450±6305±513.5
文献[26]GTAAD251±12107±1810.48
文献[26]GTAT6418±22269±2810.24365±28254±287.44
文献[8]CMTAD257.811310.6231.3113.56.5
文献[8]CMTT64152947.73343123.5
文献[27]CMTAD26311412.526111313.1
文献[27]CMTT646129814.63712964.5
文献[19]DAAMAD248±4.5119±1.514.0±1212±1.590±112.6±0.2
文献[19]DAAMT6435±9.8282.9±410.5±0.8406.5±1299±4.516.5±1.8
本文DAAMAD230.6±3.292±1.59.4±0.7215±388±1.57.6±1.3
本文DAAMT6455.4±4.3342.4±48.3±0.4417±12.1316.4±4.58.9±4
Tab.4 Mechanical property of 2219 aluminum alloy fabricated by wire and arc additive manufacturing
Fig.19 Fracture morphology of tensile specimen after T6 heat treatment
[1]   JIN P, REN H S, LIU Y B, et al Microstructural evolution and mechanical properties of 2219 aluminum alloy deposited by wire and arc additive manufacturing[J]. Advanced Engineering Materials, 2022, 24 (9): 1- 13
[2]   孙佳孝, 杨可, 王秋雨, 等 5356铝合金TIG电弧增材制造组织与力学性能[J]. 金属学报, 2021, 57 (5): 665- 674
SUN Jiaxiao, YANG Ke, WANG Qiuyu, et al Microstructure and mechanical properties of 5356 aluminum alloy fabricated by TIG arc additive manufacturing[J]. Acta Metallurgica Sinica, 2021, 57 (5): 665- 674
[3]   吴江东, 刘德华, 张子傲, 等 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59 (6): 767- 776
WU Jiangdong, LIU Dehua, ZHANG Ziao, et al Microstructure and mechanical properties of 2024 aluminum alloy prepared by wire arc additive manufacturing[J]. Acta Metallurgica Sinica, 2023, 59 (6): 767- 776
[4]   BAI J Y, YANG C L, LIN S B, et al Mechanical properties of 2219-Al components produced by additive manufacturing with TIG[J]. International Journal of Advanced Manufacturing Technology, 2015, 86 (1-4): 479- 485
[5]   OLIVEIRA J P, LALONDE A D, MA J Processing parameters in laser powder bed fusion metal additive manufacturing[J]. Materials and Design, 2020, 193: 108762
[6]   TOMAR B, SHIVA S, NATH T A review on wire arc additive manufacturing: processing parameters, defects, quality improvement and recent advances[J]. Materials Today Communications, 2022, 31: 103739
[7]   BRICE C, SHENOY R, KRAL M, et al Precipitation behavior of aluminum alloy 2139 fabricated using additive manufacturing[J]. Materials Science and Engineering, 2015, 648: 9- 14
doi: 10.1016/j.msea.2015.08.088
[8]   李权, 王国庆, 罗志伟, 等 2219铝合金电弧增材制造组织及力学性能的非均匀性[J]. 稀有金属材料与工程, 2020, 48 (11): 3969- 3976
LI Quan, WANG Guoqing, LUO Zhiwei, et al Inhomogeneity of microstructures and mechanical properties of 2219 aluminum alloy by WAAM[J]. Rare Metal Materials and Engineering, 2020, 48 (11): 3969- 3976
[9]   LIU G C, XIONG J, TANG L Microstructure and mechanical properties of 2219 aluminum alloy fabricated by double-electrode gas metal arc additive manufacturing[J]. Additive Manufacturing, 2020, 35: 101375
[10]   ZHOU Y H, LIN X, KANG N, et al Influence of travel speed on microstructure and mechanical properties of wire+arc additively manufactured 2219 aluminum alloy[J]. Journal of Materials Science and Technology, 2020, 37: 143- 153
doi: 10.1016/j.jmst.2019.06.016
[11]   REN L, WANG Z, WANG S, et al The effect of Cu content on the microstructure and properties of the wire arc additive manufacturing Al-Cu Alloy[J]. Materials (Basel), 2023, 16 (7): 2694- 2705
doi: 10.3390/ma16072694
[12]   ZHOU Y H, LIN X, KANG N, et al The heterogeneous band microstructure and mechanical performance in a wire+arc additively manufactured 2219 Al alloy[J]. Additive Manufacturing, 2022, 49: 102486
[13]   禹润缜, 赵峰, 余圣甫, 等 电弧熔丝增材制造ER2319铝堆积金属的组织性能及T6热处理工艺优化[J]. 金属热处理, 2021, 46 (4): 49- 59
YU Runzhen, ZHAO Feng, YU Shengfu, et al Microstructure, properties and T6 heat treatment process optimization for wire arc additive manufacturing ER2319 aluminum deposited metals[J]. Heat Treatment of Metals, 2021, 46 (4): 49- 59
[14]   MCLEAN N, BERMINGHAM M J, COLEGROVE P, et al Effect of hot isostatic pressing and heat treatments on porosity of wire arc additive manufactured Al 2319[J]. Journal of Materials Processing Technology, 2022, 310: 117769
[15]   HUANG L, CHEN X Z, KONOVALOV S, et al A review of challenges for wire and arc additive manufacturing (WAAM)[J]. Transactions of the Indian Institute of Metals, 2023, 76 (5): 1123- 1139
doi: 10.1007/s12666-022-02823-y
[16]   余圣甫, 禹润缜, 何天英, 等 电弧增材制造技术及其应用的研究进展[J]. 中国材料进展, 2021, 40 (3): 198- 209
YU Shengfu, YU Runzhen, HE Tianying, et al Wire arc additive manufacturing and its application: research progress[J]. Materials China, 2021, 40 (3): 198- 209
doi: 10.7502/j.issn.1674-3962.202011006
[17]   CONG B Q, QI Z W, QI B J, et al A comparative study of additively manufactured thin wall and block Structure with Al-6.3%Cu alloy using cold metal transfer process[J]. Applied Sciences, 2017, 7 (3): 275- 286
doi: 10.3390/app7030275
[18]   DONG M Y, ZHAO Y, LI Q, et al Effects of Cd addition in welding wires on microstructure and mechanical property of wire and arc additively manufactured Al−Cu alloy[J]. Transactions of Nonferrous Metals Society of China, 2022, 32 (3): 750- 764
doi: 10.1016/S1003-6326(22)65830-8
[19]   HE P F, WEI Z Y, WANG Y C, et al A novel droplet+arc additive manufacturing for aluminum alloy: method, microstructure and mechanical properties[J]. Additive Manufacturing, 2023, 61: 103356
doi: 10.1016/j.addma.2022.103356
[20]   WANG Z N, XIN L, WANG L L, et al Novel high-strength Al-Cu-Cd alloy fabricated by arc-directed energy deposition: precipitation behavior of the Cd phase and grain evolution[J]. Additive Manufacturing, 2022, 60: 103278
[21]   WANG Z H, GAO Y F, HUANG J L, et al Precipitation phenomena and strengthening mechanism of Al–Cu alloys deposited by in-situ rolled wire-arc additive manufacturing[J]. Materials Science and Engineering, 2022, 855: 143770
[22]   LI Z Q, REN W R, CHEN H W, et al θ′′′ precipitate phase, GP zone clusters and their origin in Al-Cu alloys[J]. Journal of Alloys and Compounds, 2023, 930: 167396
[23]   KIM I S , SONG M Y, KIM J H, et al Effect of added Mg on the clustering and two-step aging behavior of Al–Cu alloys[J]. Materials Science and Engineering: A, 2020, 798: 140123
[24]   ZHOU Y H, LIN X, KANG N, et al Mechanical properties and precipitation behavior of the heat-treated wire+arc additively manufactured 2219 aluminum alloy[J]. Materials Characterization, 2021, 171: 110735
[25]   GU J L, DING J L, WILLIAMS S W, et al The strengthening effect of inter-layer cold working and post-deposition heat treatment on the additively manufactured Al–6.3Cu alloy[J]. Materials Science and Engineering, 2016, 615 (10): 18- 26
doi: 10.1016/j.msea.2015.10.101
[26]   BAI J Y, FAN C L, LIN S B, et al Mechanical properties and fracture behaviors of GTA-additive manufactured 2219-Al after an especial heat treatment[J]. Journal of Materials Engineering and Performance, 2017, 26 (4): 1808- 1816
doi: 10.1007/s11665-017-2627-5
[1] Xinshan ZHUANG,Benchi YANG,Gaoliang TAO. Dynamic characteristics and micro-mechanisms of coastal cement soil modified by nano-Al2O3[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(7): 1457-1466.
[2] Ze-kai MIAO,Da-ren ZHANG,Gang MA,Yu-xiong ZOU,Yuan CHEN,Wei ZHOU,Yu-xuan XIAO. Microscopic dynamics of sand particles based on X-ray computed tomography and in-situ triaxial compression[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(8): 1597-1606.
[3] You-jun XU,Yue-kui PANG,Chao ZHANG,Jia-wang KANG,Zheng-dong HUANG. Shear performance of F-type socket joint in rectangular pipe jacking tunnel[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 957-966.
[4] Yi ZHOU,Zhe-yan JIN,Zhi-gang YANG. Review on droplets impact process on moving and rotating surfaces[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(10): 2060-2076.
[5] Sheng-qian RUAN,Tie-long WANG,Shi-kun CHEN,Yi LIU,Dong-ming YAN. Effect of PDMS incorporation on property and microstructure of geopolymer[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1302-1309.
[6] Kai-min WANG,Yu-jie ZHANG,Pei-sen KANG,Hong-sheng LIU,Xiao-hua LIU. Droplet rebound and central jet after impacting hydrophilic tubular surface[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1191-1198.
[7] Yan LAN,Qi GU,Yu PENG,Qiang ZENG,Zhidong ZHANG. Microstructure of early-age calcium sulphoaluminate and ordinary Portland cement paste cured under different CO2 pressures[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(12): 2454-2462.
[8] Ya-feng YANG,Yi-ping WANG,Zhi-xin CHEN,Jian-jun SU,Bin YANG. Dispersion characteristics of droplet in bus and risk prediction of infection[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 161-167.
[9] Jun ZHANG,Yu-min CUI,Hong-zhou HE. Numerical calculation model on discrete droplet deformation in liquid-liquid system under electric field[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1391-1398.
[10] Ding-hua HU,Shi-yu LIU. Numerical study on dynamic behaviors of Al2O3 nanofluid droplet impacting on solid wall[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 991-998.
[11] Hai-chao SUN,Wen-jun WANG,Dao-sheng LING. Mechanical properties and microstructure of solidified soil with low cement content[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 530-538.
[12] Jun DU,Chen MA,Zheng-ying WEI. Dynamic response of surface morphology of aluminum (Al) deposited layers in wire and arc additive manufacturing based on visual sensing[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1481-1489.
[13] Jing-zhi ZHANG,Wu-kai CHEN,Nai-xiang ZHOU,Li LEI,Fu-shun LIANG. Experiment study on formation and length of droplets in T-junction microchannels[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 1007-1013.
[14] Lei ZHANG,Hai-jun XU,Teng-an ZOU,Xiao-jun XU,Yu-kang CHANG. Modeling and property analysis of underwater vector propulsion system based on nested Z-shafts[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 450-458.
[15] Song-lin YU,Han KE,Liang-tong ZHAN,Tao MENG,Yun-min CHEN,Ce YANG. Engineering properties of excavated soil and analysis of post-construction settlement and capacity for pit landfill[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2364-2376.