Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (5): 957-966    DOI: 10.3785/j.issn.1008-973X.2023.05.012
    
Shear performance of F-type socket joint in rectangular pipe jacking tunnel
You-jun XU1,2,3(),Yue-kui PANG1,2,Chao ZHANG1,2,3,Jia-wang KANG1,Zheng-dong HUANG1
1. School of Civil Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
2. Academician Workstation of Mine Safety and Underground Engineering, Inner Mongolia University of Science and Technology, Baotou, 014010, China
3. Engineering Research Center of Urban Underground Engineering at Universities of Inner Mongolia Autonomous Region, Inner Mongolia University of Science and Technology, Baotou 014010, China
Download: HTML     PDF(3788KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Joint shear tests were carried out to study the shear force performance and deformation characteristics of the F-type socket joint in rectangular pipe jacking tunnel under the conditions of foundation settlement, construction disturbance and upper load change. The supporting function of soils under different geological conditions on the rectangular pipe jacking was simulated by setting equivalent foundation springs at the bottom of the pipe. Results showed that during the shear deformation of joint, the greater the stiffness of steel ring and foundation is, the greater the shear force of the joint is, and the smaller the change of dislocation is. The strength of the steel ring weld seriously restricts the bearing capacity of the joint, and the damage of weld reduced the shearing capacity of the joint by 29.5%—51.5%. The steel ring at the joint is prone to the warping deformation or seam weld cracking under the shearing action. The concrete in contact with the steel ring at the joint is easy to be crushed, and the concrete at the root of the joint is subject to crack.



Key wordsrectangular pipe jacking      F-type socket joint      shear stiffness      mechanical property      failure mechanism     
Received: 25 August 2022      Published: 09 May 2023
CLC:  U 45  
Fund:  国家自然科学基金资助项目(51868062)
Cite this article:

You-jun XU,Yue-kui PANG,Chao ZHANG,Jia-wang KANG,Zheng-dong HUANG. Shear performance of F-type socket joint in rectangular pipe jacking tunnel. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 957-966.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.05.012     OR     https://www.zjujournals.com/eng/Y2023/V57/I5/957


矩形顶管隧道F型承插接头剪切性能研究

通过接头剪切试验研究在地基沉降、施工扰动及上部荷载变化等情况下矩形顶管隧道的F型承插接头剪切受力性能及变形特征. 通过在管节底部布置等效地基弹簧的方式,模拟不同地层条件下土体对矩形顶管的支撑作用. 结果表明:在管节接头发生剪切变形过程中,钢套环刚度与地基刚度越大,接头抗剪承载能力越强,错台量越小. 钢套环焊缝强度严重制约管节的承载能力,裂缝出现使得接头的抗剪承载力下降29.5%~51.5%. 在剪切作用下,接头钢套环容易发生翘曲变形或者焊缝开裂,接头处与钢套环接触的混凝土容易被压碎,接头根部混凝土容易开裂.


关键词: 矩形顶管,  F型承插接头,  剪切刚度,  受力性能,  失效机制 
Fig.1 Structural diagram of F-type socket joint
Fig.2 Section size and reinforcement
Fig.3 Olecranon chloroprene rubber section size
材料 E/MPa fcu/MPa fy/MPa fu/MPa HA/(°) $ \lambda $/% C/%
C50混凝土 34 500 53.1
Q235钢 196 000 216 352
HRB400级钢筋 203 000 385 527
鹰嘴橡胶圈 10 50±5 450 30
Tab.1 Different material performance parameters
Fig.4 Diagram for shear test of F-type socket joints
Fig.5 Equivalent foundation spring arrangements
Fig.6 Measuring points for steel ring strain and cabin deformation
工况 等效地层 n Kv/ (103 kN·m?3)
1 松散砂土 9 10.160
2 软弱粘性土 6 6.770
3 新填土 4 4.520
Tab.2 Shear test conditions of F-type socket joint
Fig.7 Force diagram of tunnel joint
Fig.8 Shear force variety of pipe jacking joints
Fig.9 Weld cracking diagram
Fig.10 Weld form of steel ring
Fig.11 Steel ring warping diagram
Fig.12 Dislocation change of pipe jacking joints
Fig.13 Relationship between Shear force and dislocation of joints
n KS1/(kN·m?1) KS2/(kN·m?1)
9 31.3 21.5
6 44.4 41.2
4 46.7 44.3
Tab.3 Shearing capacity of pipe jacking joints
Fig.14 Deformation of wire displacement gauge at joints
Fig.15 Concrete shear failure characteristics
Fig.16 Pipe jacking joints steel ring strain
Fig.17 Diagram of weld edge tear damage
[1]   朱合华, 吴江斌, 潘同燕 曲线顶管的三维力学模型理论分析与应用[J]. 岩土工程学报, 2003, 25 (4): 492- 495
ZHU He-hua, WU Jiang-bin, PAN Tong-yan Theoretical analysis of three-dimensional mechanical model of curved pipe jacking and its application[J]. Chinese Journal of Geotechnical Engineering, 2003, 25 (4): 492- 495
doi: 10.3321/j.issn:1000-4548.2003.04.024
[2]   丁文其, 朱合华, 范明星, 等 管节-接头的弹性地基梁法及顶管施工模拟分析[J]. 同济大学学报:自然科学版, 2001, 29 (5): 616- 620
DING Wen-qi, ZHU He-hua, FAN Ming-xing, et al Beam on elastic foundation method considering pipe-joint and analysis of pipe jacking construction[J]. Journal of TongJi University: Natural Science, 2001, 29 (5): 616- 620
[3]   刘文俊, 傅鹤林, 温树杰, 等 近距离下穿施工对既有矩形顶管通道的影响分析[J]. 铁道科学与工程学报, 2016, 13 (9): 1782- 1788
LIU Wen-jun, FU He-lin, WEN Shu-jie, et al Influencing analysis of construction of mining tunnel close crossing underneath the existing rectangular pipe jacking tunnel[J]. Journal of Railway Science and Engineering, 2016, 13 (9): 1782- 1788
doi: 10.3969/j.issn.1672-7029.2016.09.018
[4]   许有俊, 董文秀, 裴学军 矩形顶管F型承插接头抗剪刚度及影响因素研究[J]. 隧道建设(中英文), 2021, 41 (S2): 84- 91
XU You-jun, DONG Wen-xiu, PEI Xue-jun Shear stiffness and influencing factors of F-type socket joint of rectangular pipe jacking[J]. Tunnel Construction, 2021, 41 (S2): 84- 91
[5]   梁坤, 封坤, 肖明清, 等 水压作用对通缝拼装管片结构力学性能的影响研究[J]. 岩土工程学报, 2019, 41 (11): 2037- 2045
LIANG Kun, FENG Kun, XIAO Ming-qing, et al Water-pressure action on structural behaviors of straight assembling segmental linings of underwater shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2019, 41 (11): 2037- 2045
[6]   封坤, 何川, 肖明清 高轴压作用下盾构隧道复杂接缝面管片接头抗弯试验[J]. 土木工程学报, 2016, 49 (8): 99- 110
FENG Kun, HE Chuan, XIAO Ming-qing Bending tests of segment joint with complex interface for shield tunnel under high axial pressure[J]. China Civil Engineering Journal, 2016, 49 (8): 99- 110
doi: 10.15951/j.tmgcxb.2016.08.012
[7]   FENG Kun, HE Chuan, QIU Yue, et al Full-scale tests on bending behavior of segmental joints for large underwater shield tunnels[J]. Tunnelling and Underground Space Technology, 2018, 75 (5): 100- 116
[8]   ZUO Lei-bin, LI Guo-hui, FENG Kun, et al Experimental analysis of mechanical behavior of segmental joint for gas pipeline shield tunnel under unfavorable compression-bending loads[J]. Tunnelling and Underground Space Technology, 2018, 77 (7): 227- 236
[9]   李新星, 杨志豪, 曹文宏 超大隧道装配式管片接头刚度的模型试验研究[J]. 土木工程学报, 2015, 48 (S2): 315- 320
LI Xin-xing, YANG Zhi-hao, CAO Wen-hong Experimental investigations on stiffness of segment joints of larger tunnel prefabricated lining[J]. China Civil Engineering Journal, 2015, 48 (S2): 315- 320
[10]   LIU Xian, ZHANG Cheng, ZHANG Cheng-guang, et al Ultimate load-carrying capacity of the longitudinal joints in segmental tunnel linings: I llustrated with the typical segment joints of the Shanghai Metro rapid transit system[J]. Structural Concrete, 2017, 18 (11): 693- 709
[11]   SHEN Shui-long, WU Huai-na, CUI Yu-jun, et al Long-term settlement behaviour of Metro tunnels in the soft deposits of Shanghai[J]. Tunnelling and Underground Space Technology, 2014, 40 (2): 309- 323
[12]   刘鹏, 丁文其, 杨波 沉管隧道接头刚度模型研究[J]. 岩土工程学报, 2013, 35 (S2): 133- 139
LIU Peng, DING Wen-qi, YANG Bo Model for stiffness of joints of immersed tube tunnel[J]. Chinese Journal of Geotechnical Engineering, 2013, 35 (S2): 133- 139
[13]   徐国文, 卢岱岳 接头抗弯刚度非线性及渗水影响下盾构隧道力学行为分析[J]. 岩土工程学报, 2016, 38 (7): 1202- 1211
XU Guo-wen, LU Dai-yue Mechanical behavior of shield tunnel considering nonlinearity of flexural rigidity and leakage of joints[J]. Chinese Journal of Geotechnical Engineering, 2016, 38 (7): 1202- 1211
doi: 10.11779/CJGE201607006
[14]   张稳军, 张琪, 张高乐 天津滨海Z2号线盾构隧道接头螺栓比选及抗弯刚度研究[J]. 岩土工程学报, 2019, 41 (S1): 113- 116
ZHANG Wen-jun, ZHANG Qi, ZHANG Gao-le Selection of bolted joints and bending stiffness of shield tunnel of Z2 metro line in Tianjin Binhai New Area[J]. Chinese Journal of Geotechnical Engineering, 2019, 41 (S1): 113- 116
[15]   WANG Zhan, WANG Li-zhong, LI Ling-ling, et al Failure mechanism of tunnel lining joints and bolts with uneven longitudinal ground settlement[J]. Tunnelling and Underground Space Technology, 2014, 40 (2): 300- 308
[16]   胡翔, 薛伟辰 预制预应力综合管廊受力性能试验研究[J]. 土木工程学报, 2010, 43 (5): 29- 37
HU Xiang, XUE Wei-chen Experimental study of mechanical properties of PPMT[J]. China Civil Engineering Journal, 2010, 43 (5): 29- 37
doi: 10.15951/j.tmgcxb.2010.05.017
[17]   赵文昊, 彭斌, 王恒栋, 等 预制拼装综合管廊接头的容许差异沉降分析[J]. 建筑结构学报, 2020, 41 (S1): 434- 442
ZHAO Wen-hao, PENG Bin, WANG Heng-dong, et al Analysis of permissible differential settlement for assembled precast utility tunnel with different joint types[J]. Journal of Building Structures, 2020, 41 (S1): 434- 442
doi: 10.14006/j.jzjgxb.2020.S1.049
[1] Sheng-qian RUAN,Tie-long WANG,Shi-kun CHEN,Yi LIU,Dong-ming YAN. Effect of PDMS incorporation on property and microstructure of geopolymer[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1302-1309.
[2] Xiao ZHANG,Hao YU,Zhuang LI,Yan-shun LIU,Zi-dong ZHANG,Xin-yu JI,Xiang-hui LI. Discrete element study on effect of cyclic loading strengthening on meso-destruction of granite[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2303-2312.
[3] Hai-chao SUN,Wen-jun WANG,Dao-sheng LING. Mechanical properties and microstructure of solidified soil with low cement content[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 530-538.
[4] Lei ZHANG,Hai-jun XU,Teng-an ZOU,Xiao-jun XU,Yu-kang CHANG. Modeling and property analysis of underwater vector propulsion system based on nested Z-shafts[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 450-458.
[5] Song-lin YU,Han KE,Liang-tong ZHAN,Tao MENG,Yun-min CHEN,Ce YANG. Engineering properties of excavated soil and analysis of post-construction settlement and capacity for pit landfill[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2364-2376.
[6] Jin-feng WANG,Ai-ping ZHANG,Wen-hao WANG. Effects of stud height on shear behavior of stud connectors[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2076-2084.
[7] LI Qiang, JIN Xian yu. Effect of stirrup corrosion on bearing capacity of uniaxial compression short column[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(10): 1929-1938.
[8] ZHENG Ying-Ren, XU Gao, WANG Cheng, XIAO Jiang. Failure mechanism of tunnel and dividing line standard between shallow and deep bury[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(10): 1851-1856.