Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (11): 2303-2312    DOI: 10.3785/j.issn.1008-973X.2022.11.021
    
Discrete element study on effect of cyclic loading strengthening on meso-destruction of granite
Xiao ZHANG1(),Hao YU1,Zhuang LI1,Yan-shun LIU1,Zi-dong ZHANG1,Xin-yu JI1,Xiang-hui LI2
1. Geotechnical and Structural Engineering Research Center, Shandong University, Jinan 250061, China
2. School of Civil Engineering, Shandong University, Jinan 250061, China
Download: HTML     PDF(5840KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A grain-based model (GBM) was established based on the results of uniaxial compression test by discrete element method. The intragranular and intergranular contact model of GBM was improved according to the results of indoor cyclic loading and unloading tests. A grain-based reinforcement model was established, which accurately characterized the cyclic loading strengthening effect. The grain-based reinforcement model was used to reveal the influence mechanism of cyclic loading strengthening on the mesoscopic failure of granite during uniaxial compression. The results showed that the stress distribution by self-locking effect was different in the pre-peak stress stage, which led to tensile microcracks in intergranular and intragranular contact. The Quartz and feldspar became load-bearing bodies in turn. The shear energy by the earlier strengthening was released in the post-peak stress stage, leading to the intensive intergranular microcracks of feldspar. The phenomenon was the main sign of the instability of the specimen. The differential failure of the minerals around the feldspar caused the change of the feldspar destruction pathways and the peak stress of test block increased with the enlargement of strengthening factor. The grain-based reinforcement model provides a new method, which is used to study the mesoscopic failure mechanism of brittle rocks with different loading paths on cyclic loading strengthening.



Key wordsgranite      cyclic loading strengthening effect      discrete element      grain-based reinforcement model      micro-cracking behavior      mesoscopic failure mechanism     
Received: 27 December 2021      Published: 02 December 2022
CLC:  TU 452  
Fund:  中央高校基本科研业务费资助项目(2019GN079)
Cite this article:

Xiao ZHANG,Hao YU,Zhuang LI,Yan-shun LIU,Zi-dong ZHANG,Xin-yu JI,Xiang-hui LI. Discrete element study on effect of cyclic loading strengthening on meso-destruction of granite. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2303-2312.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.11.021     OR     https://www.zjujournals.com/eng/Y2022/V56/I11/2303


循环加载强化作用对花岗岩细观破坏影响的离散元研究

基于室内单轴压缩试验结果,采用离散元方法建立等效晶质模型(GBM). 根据室内循环加卸载试验结果改进GBM模型晶内、晶间接触模型,建立能够准确表征循环加载强化作用的GBM强化模型,借此GBM强化模型揭示循环加载强化作用对花岗岩单轴压缩过程细观破坏的影响机制. 结果表明,在峰前应力阶段,自锁效应造成的应力分布不同,导致晶内/晶间接触出现以张拉为主的裂纹,石英、长石依次成为承载主体;在峰后应力阶段,前期强化作用所积蓄的剪切能量得到释放,导致长石出现密集的晶内裂纹,是试块失稳的主要标志;长石周边矿物差异性失效引起长石矿物破坏路径改变,造成试块峰值应力随强化系数增大呈现波动性增长. 构建的GBM强化模型为研究循环加载强化作用对脆性岩石不同加载路径细观破坏机制提供新方法.


关键词: 花岗岩,  循环加载强化作用,  离散元,  GBM强化模型,  微裂纹特征,  细观破坏机理 
Fig.1 White linen granite
矿物成分 ωc/% 矿物成分 ωc/%
石英 45.64 云母 6.75
斜长石 23.02 其他矿物 0.40
钾长石 24.19
Tab.1 Mass fraction of different mineral compositions
Fig.2 Process of constructing GBM
种类 颗粒基本参数 晶体内部细观参数 晶体边界细观参数
ωc/
%
Rmin/
mm
Rmax /
mm
ρ/
(kg·m?3
E/
GPa
${\bar {\boldsymbol{k}}_{\text{n} } }/{\bar {\boldsymbol{k}}_{\text{s} } }$ $ {\overline \sigma _{\text{c}}} $/
MPa
c/
MPa
φ/
(°)
μ ${\bar {\boldsymbol{k}}_{\text{n} } }$/
(GPa·m?1
${\bar {\boldsymbol{k}}_{\text{s} } }$/
(GPa·m?1
$ {\overline \sigma _{\text{t}}} $/
MPa
$ {\overline \sigma _{\text{c}}} $/
MPa
φ/
(°)
μ
石英 46 0.2 1.8 2 650 6.64 1 82.67 82.67 50 0.5 3×1011 6.25×1010 72.4 123.6 20 0.4
长石 47 0.5 1.8 2 600 5.13 2 103.6 103.60 35 0.5
云母 7 0.5 1.8 3 050 3.14 2 62.00 62.00 30 0.5
Tab.2 Meso-scopic parameters of GBM
项目 σu/MPa E/GPa εu
原状试块 160.1 16.0 0.012 5
GBM模型 163.6 15.7 0.011 6
Tab.3 Macroscopic parameters between undisturbed specimens and GBM
Fig.3 Comparison of σ-ε curves between undisturbed specimens and GBM
Fig.4 Residual deformation at each cycle loading stage
Fig.5 Stress-strain curves between undisturbed specimens and pretreatment specimens
Fig.6 Strengthened comparison of linear parallel bond model
Fig.7 Sf -strain relationship graph
Fig.8 Stress-strain curve of grain-based reinforcement model with different $S_{\text{f}}^ * $
Fig.9 Variation curves of peak strength and elastic modulus of grain-based reinforcement model with $S_{\text{f}}^ * $ and residual deformation
项目 原状试块 预处理试块
σ0u /MPa E0 /GPa $\sigma _{{\rm{Iu}}}^\prime$ /MPa ${E_1}'$ /GPa
试验值 160.1 16.0 174.6 18.3
模拟值 159.9 16.0 175.3 18.6
Tab.4 Macroscopic parameter test value and simulation value of undisturbed specimens and pretreatment specimens
Fig.10 Stress-strain curves between GBM and grain-based reinforcement model
Fig.11 Macroscopic failure characteristics of pretreatment specimens and grain-based reinforcement model
Fig.12 Initial stage microcrack distribution
Fig.13 Distribution of pre-peak microcracks at different stress levels in GBM
Fig.14 Distribution of pre-peak microcracks at different stress levels in grain-based reinforcement model
Fig.15 GBM peak stress and post-peak microcrack distribution
Fig.16 Grain-based reinforcement model peak stress and post-peak microcrack distribution
Fig.17 Variation curve of grain-based reinforcement model crack number with strain
Fig.18 Grain-based reinforcement model crack distribution characteristics
$\sigma _{{\rm{1}}}^\prime$ na ne
nt ns nt ns
石英 长石 云母 石英 长石
0.5 30 4 0 0 1 0 0
0.6 65 25 3 0 2 0 0
0.7 101 73 15 1 3 3 0
0.8 133 165 36 4 4 16 0
0.9 182 268 75 11 7 31 1
1.0 243 418 224 71 15 73 6
Tab.5 Statistics of number of cracks in grain-based reinforcement model when $S_{\text{f}}^ * $=0.35
$\sigma _{{\rm{1}}}^\prime$ na ne
nt ns nt ns
石英 长石 云母 石英 长石
0.5 30 4 0 0 1 0 0
0.6 66 26 3 0 2 0 0
0.7 102 74 18 2 2 3 0
0.8 130 160 37 4 4 13 0
0.9 185 269 89 11 8 32 1
1.0 243 441 239 80 25 77 4
Tab.6 Statistics of number of cracks in grain-based reinforcement model when $S_{\text{f}}^ * $=0.4
Fig.19 Variation of nc and $ {\sigma' _{{\text{1u}}}}$ with $S_{\text{f}}^ * $
[1]   曹祺, 李文权 开挖扰动下巷道围岩细观力学行为分析[J]. 煤矿安全, 2017, 48 (3): 190- 193
CAO Qi, LI Wen-quan Mesomechanics behavior analysis of surrounding rock under roadway excavation disturbance[J]. Safety in Coal Mines, 2017, 48 (3): 190- 193
doi: 10.13347/j.cnki.mkaq.2017.03.051
[2]   杨建华, 代金豪, 姚池, 等 爆破开挖扰动下锚固节理岩质边坡位移突变特征与能量机理[J]. 爆炸与冲击, 2022, 42 (3): 138- 149
YANG Jian-hua, DAI Jin-hao, YAO Chi, et al Displacement mutation characteristics and energy mechanisms of anchored jointed rock slopes under blasting excavation disturbance[J]. Explosion and Shock Waves, 2022, 42 (3): 138- 149
[3]   尤明庆, 苏承东 大理岩试样循环加载强化作用的试验研究[J]. 固体力学学报, 2008, 29 (1): 66- 72
YOU Ming-qing, SU Cheng-dong Experimental research on strengthening under cyclic loading of marble samples[J]. Chinese Journal of Solid Mechanics, 2008, 29 (1): 66- 72
doi: 10.19636/j.cnki.cjsm42-1250/o3.2008.01.010
[4]   徐速超, 冯夏庭, 陈炳瑞 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. 岩土力学, 2009, 30 (10): 2929- 2934
XU Su-chao, FENG Xia-ting, CHEN Bing-rui Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. Rock and Soil Mechanics, 2009, 30 (10): 2929- 2934
doi: 10.3969/j.issn.1000-7598.2009.10.006
[5]   李春阳, 周宗红, 刘松 花岗岩单轴循环加卸载试验及声发射特性研究[J]. 煤矿机械, 2016, 37 (11): 67- 70
LI Chun-yang, ZHOU Zong-hong, LIU Song Experimental test and acoustic emission characteristics of granite under uniaxial cyclic loading and unloading conditions[J]. Coal Mine Machinery, 2016, 37 (11): 67- 70
doi: 10.13436/j.mkjx.201611027
[6]   周家文, 杨兴国, 符文熹, 等 脆性岩石单轴循环加卸载试验及断裂损伤力学特性研究[J]. 岩石力学与工程学报, 2010, 29 (6): 1172- 1183
ZHOU Jia-wen, YANG Xing-guo, FU Wen-xi, et al Experimental test and fracture damage mechanical characteristics of brittle rock under uniaxial cyclic loading and unloading conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29 (6): 1172- 1183
[7]   姚吉康, 王志亮, 何爱林, 等 循环加卸载下花岗岩强度变形及声发射特征[J]. 水利水运工程学报, 2018, 168 (2): 74- 81
YAO Ji-kang, WANG Zhi-liang, HE Ai-lin, et al Strength and deformation along with acoustic emission characteristics of granite under cyclic loading and unloading[J]. Hydro-Science and Engineering, 2018, 168 (2): 74- 81
doi: 10.16198/j.cnki.1009-640X.2018.02.010
[8]   JAEGER J C. Brittle fracture of rocks [C]// Proceedings of the eighth symposium on rock mechanics. Baltimore: Port City Press, 1967: 3-57.
[9]   夏明, 赵崇斌 簇平行黏结模型中微观参数对宏观参数影响的量纲研究[J]. 岩石力学与工程学报, 2014, 33 (2): 327- 338
XIA Ming, ZHAO Chong-bin Dimensional analysis of effects of microscopic parameters on macroscopic parameters for clumpparallel-bond model[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33 (2): 327- 338
doi: 10.13722/j.cnki.jrme.2014.02.008
[10]   CUNDALL P A, STRACK O A discrete numerical model for granular assemblies[J]. Géotechnique, 2008, 30 (3): 331- 336
[11]   周健, 池永, 池毓蔚, 等 颗粒流方法及PFC2D程序[J]. 岩土力学, 2000, 21 (3): 80- 83
ZHOU Jian, CHI Yong, CHI Yu-wei, et al The method of particle flow and PFC2D code[J]. Rock and Soil Mechanics, 2000, 21 (3): 80- 83
doi: 10.3969/j.issn.1000-7598.2000.03.020
[12]   DOP A, PAC B A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41 (8): 1329- 1364
doi: 10.1016/j.ijrmms.2004.09.011
[13]   周喻, 高永涛, 吴顺川, 等 等效晶质模型及岩石力学特征细观研究[J]. 岩石力学与工程学报, 2015, 34 (3): 511- 519
ZHOU Yu, GAO Yong-tao, WU Shun-chuan, et al An equivalent crystal model for mesoscopic behaviour of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34 (3): 511- 519
doi: 10.13722/j.cnki.jrme.2015.03.008
[14]   胡训健, 卞康, 谢正勇, 等 细观结构的非均质性对花岗岩强度及变形影响的颗粒流模拟[J]. 岩土工程学报, 2020, 42 (8): 1540- 1548
HU Xun-jian, BIAN Kang, XIE Zheng-yong, et al Influence of meso-structure heterogeneity on granite strength and deformation with particle flow code[J]. Chinese Journal of Geotechnical Engineering, 2020, 42 (8): 1540- 1548
[15]   SHI Chong, YANG Wen-kun, YANG Jun-xiong, et al Calibration of micro-scaled mechanical parameters of granite based on a bonded-particle model with 2D particle flow code[J]. Granular Matter, 2019, 21 (2): 1- 13
[16]   ZHOU Jian, LAN Heng-xing, ZHANG Lu-qing, et al Novel grain-based model for simulation of brittle failure of alxa porphyritic granite[J]. Engineering Geology, 2019, 251: 100- 114
doi: 10.1016/j.enggeo.2019.02.005
[17]   Itasca Consulting Group Inc. PFC, Version 5.0 [M]. Minneapolis: Itasca Consulting Group Inc. , 2014: 1-2.
[18]   石崇, 张强, 王盛年 颗粒流(PFC5.0)数值模拟技术及应用[J]. 岩土力学, 2018, 39 (Suppl.2): 36
SHI Chong, ZHANG Qiang, WANG Sheng-nian Particle Flow Code(PFC5.0)[J]. Rock and Soil Mechanics, 2018, 39 (Suppl.2): 36
[19]   陈铁民, 陶振宇 岩石粘滑的自锁模型及数值模拟[J]. 西北地震学报, 1993, 15 (1): 39- 44
CHEN Tie-min, TAO Zhen-yu Self-locking model of stick-slip rock and numerical simulation[J]. China Earthquake Engineering Journal, 1993, 15 (1): 39- 44
[1] Ling-xiao CHEN,Wen-xiang TIAN,Gang MA,Yong-gang CHENG,Qiao WANG,Wei ZHOU. Thermal-mechanical coupled lattice discrete element method for simulating thermal cracking of quasi-brittle materials[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(9): 1750-1760.
[2] Yu-xuan XIAO,Gang MA,Xi LU,Wei ZHOU,Di WANG,Ze-kai MIAO. Breakage behaviour of rockfill particles in complicated constraint patterns[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1514-1522, 1559.
[3] Jian ZHOU,Gang MA,Wei ZHOU,Yong-gang CHENG,Quan-shui HUANG,Xue-xing CAO. Statistical analysis of fragment shape of rock grain after crushing based on FDEM[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 348-357.
[4] Rui-huan CAI,Yong-zhi ZHAO. Effect of screw structure on granular mixing in a double-screw conical mixer[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2067-2075.
[5] Hua-qing MA,Yong-zhi ZHAO. CFD-DEM investigation on mixing of rod-like particles in spout-fluid bed[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1347-1354.
[6] Shuai ZHENG,Da-peng TAN,Lin LI,Yin-long ZHU. Ultrasonic coupled microreactor CFD-DEM dynamic modeling and regulating method[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1237-1251.
[7] Lei XU,Kun LUO,Yong-zhi ZHAO,Jian-ren FAN,Ke-fa CEN. Effect of particle size on liner wear in semi-autogenous mill[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2255-2263.
[8] Han ZHANG,Xin-li HU,Shuang-shuang WU. Damage evolution of soil-rock mixture based on Fourier series approximations method[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1955-1965.
[9] DONG Hui, WU Kai-song, KUANG Yu-chun, DAI Mao-lin. Study on separation law of hydrate slurry in hydrocyclone based on CFD-DEM[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(9): 1811-1820.
[10] DENG Xuan-xuan, MA Gang, ZHOU Wei, CHANG Xiao-lin. Effects of local constraints patterns on fragmentation of single grain[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(7): 1329-1337.
[11] FU Jian-xin, SONG Wei-dong, TAN Yu-ye. Influence degree analysis of rock mass' mechanical parameters on roadway's deformation characteristics[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(12): 2365-2372.
[12] LIN Cheng xiang, LING Dao sheng, ZHONG Shi ying. Application of particle flow code numerical simulation in research of geotechnical behavior of lunar soil[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(9): 1679-1691.
[13] REN Li-bo, HAN Ji-tian, ZHAO Hong-xia. Numerical simulation of discrete particles in fluidized bed with immersed tube[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(1): 150-156.
[14] CHEN Hui, LIU Yi-lun, ZHAO Xian-qiong, XIAO You-gang. Analysis on avalanching motion and force chains of bed material within rotating cylinder based on discrete element method[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(12): 2277-2283.
[15] FANG Xi-wu, LIU Zhen-yu, TAN Jian-rong. Algorithm with hybrid method based for sphere packing in
two-dimensional region
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(4): 650-655.