Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (7): 1237-1251    DOI: 10.3785/j.issn.1008-973X.2019.07.002
Mechanical and Energy     
Ultrasonic coupled microreactor CFD-DEM dynamic modeling and regulating method
Shuai ZHENG,Da-peng TAN*(),Lin LI,Yin-long ZHU
College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
Download: HTML     PDF(2287KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An ultrasonic coupled flow flied regulating method was proposed in order to improve the microreactor flow field uniformity and restrain the particle aggregation. A fluid mechanic model for microreactor internal flow field was constructed based on the computational fluid dynamics and discrete element method (CFD-DEM), and the regularities of multiphase flow field and particle motion were obtained. The particle collision effects and nonlinear flow field profiles of microreactor channels under ultrasonic excitation were acquired by revising the source item of the realizable k-ε turbulence model. The chaotic states of particle groups were analyzed by the fractal method. The numerical simulations were conducted by taking the T shape confluence microreactor as an instance. Results show that the proposed method can improve the internal flow field uniformity of microreactor, and can restrain the phenomenon of particle aggregation.



Key wordsmicroreactor      ultrasonic excitation      computational fluid dynamics and discrete element method (CFD-DEM)      particle aggregation      fractal method     
Received: 10 October 2018      Published: 25 June 2019
CLC:  O 359  
Corresponding Authors: Da-peng TAN     E-mail: tandapeng@zjut.edu.cn
Cite this article:

Shuai ZHENG,Da-peng TAN,Lin LI,Yin-long ZHU. Ultrasonic coupled microreactor CFD-DEM dynamic modeling and regulating method. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1237-1251.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.07.002     OR     http://www.zjujournals.com/eng/Y2019/V53/I7/1237


微反应器计算流体力学与离散元建模及调控

为了提高微反应器内部流场均匀性,抑制固相颗粒团聚,提出超声波耦合流场强化调控方法. 基于计算流体力学与离散元耦合(CFD-DEM)方法,建立微反应器流体动力学模型,得到微反应器流道的多相流场分布与颗粒运动规律. 对可实现k-ε湍流模型源项进行修正,得到微型反应器在超声波激振作用下的颗粒碰撞冲击效应与内部流场非线性分布特征. 结合分形方法,对流道中的颗粒群混沌态分布进行定量分析. 以T形汇流反应器为例,开展数值仿真研究. 结果表明,超声波耦合流场强化可以提高反应器内的流场分布均匀性,对离散颗粒团聚进行有效的抑制.


关键词: 微型反应器,  超声波激振,  计算流体力学与离散元耦合(CFD-DEM),  颗粒团聚,  分形方法 
Fig.1 Microreactor flow passage structure diagram
Fig.2 Fractal processing for microreactor flow field recognition
Fig.3 Computation flow chart of CFD-DEM numerical model
Fig.4 Verification of grid independence
Fig.5 Flow field parameter curves by ultrasonic excitation
Fig.6 Velocity cloud charts without ultrasonic excitation
Fig.8 Velocity cloud charts with ultrasonic excitation
Fig.9 Pressure cloud charts with ultrasonic excitation
Fig.7 Pressure cloud charts without ultrasonic excitation
Fig.10 Flow field profiles with different excitation frequency
Fig.11 Particle distributions in microreactor flow passage without ultrasonic excitation
Fig.12 Particle distributions in microreactor flow passage with ultrasonic excitation
Fig.13 Particle volume fraction profiles of characteristic points
Fig.14 Particle velocity profiles of characteristic points
Fig.15 Particle fractal dimension of passage joining point without ultrasonic excitation
Fig.16 Particle fractal dimension of passage buckling point without ultrasonic excitation
Fig.17 Particle fractal dimension of passage joining point with ultrasonic excitation
Fig.18 Particle fractal dimension of passage buckling point with ultrasonic excitation
[1]   MIELKE E, PLOUFFE P, MONGEON S S, et al Micro-reactor mixing unit interspacing for fast liquid-liquid reactions leading to a generalized scale-up methodology[J]. Chemical Engineering Journal, 2018, 352: 682- 694
doi: 10.1016/j.cej.2018.07.043
[2]   COYLE E E, OELGEMOLLER M Micro-photochemistry: photochemistry in microstructured reactors. the new photochemistry of the future?[J]. Photochemical and Photobiological Sciences, 2008, 7 (11): 1313- 1322
doi: 10.1039/b808778d
[3]   FERROUILLAT S, TOCHON P, PEERHOSSAINI H Micromixing enhancement by turbulence: application to multifunctional heat exchangers[J]. Chemical Engineering and Processing Process Intensification, 2006, 45 (8): 633- 640
doi: 10.1016/j.cep.2006.01.006
[4]   LOEB P, LOEWE H, HESSEL V Fluorinations, chlorinations and brominations of organic compounds in micro reactors[J]. Journal of Fluorine Chemistry, 2005, 36 (17): 1677- 1694
[5]   KASHID M, RENKEN A, KIWI-MINSKER L Mixing efficiency and energy consumption for five generic microchannel designs[J]. Chemical Engineering Journal, 2011, 167 (2/3): 436- 443
[6]   MANZ A, GRABER N, WIDMER H M Miniaturized total chemical analysis systems: a novel concept for chemical sensing[J]. Sensors and Actuators B: Chemical, 1990, 1 (1-6): 244- 248
doi: 10.1016/0925-4005(90)80209-I
[7]   ITO Y, NAGATA K, KOMORI S The effects of high-frequency ultrasound on turbulent liquid mixing with a rapid chemical reaction[J]. Physics of Fluids, 2002, 14 (12): 4362- 4371
doi: 10.1063/1.1518508
[8]   COMMENGE J M, FALK L, CORRIOU J P, et al Optimal design for flow uniformity in microchannel reactors[J]. AIChE Journal, 2002, 48 (2): 345- 358
doi: 10.1002/(ISSN)1547-5905
[9]   GLASGOW I, AUBRY N Enhancement of microfluidic mixing using time pulsing[J]. Lab on A Chip, 2003, 3 (2): 114- 120
doi: 10.1039/B302569A
[10]   RAHIMI M, AGHEL B, HATAMIFAR B, et al CFD modeling of mixing intensification assisted with ultrasound wave in a T-type microreactor[J]. Chemical Engineering and Processing Process Intensification, 2014, 86 (SI): 36- 46
[11]   LI J, ZHANG Y, GAO T, et al A confined "microreactor" synthesis strategy to three dimensional nitrogen-doped graphene for high-performance sodium ion battery anodes[J]. Journal of Power Sources, 2018, 378: 105- 111
doi: 10.1016/j.jpowsour.2017.12.028
[12]   RAHIMI M, SAFARI S, FARYADI M, et al Experimental investigation on proper use of dual high-low frequency ultrasound waves: advantage and disadvantage[J]. Chemical Engineering and Processing Process Intensification, 2014, 78 (4): 17- 26
[13]   MONNIER H, WILHELM A M, DELMAS H Effects of ultrasound on micromixing in flow cell[J]. Chemical Engineering Science, 2000, 55 (19): 4009- 4020
doi: 10.1016/S0009-2509(00)00067-1
[14]   PARVIZIAN F, RAHIMI M, FARYADI M Macro- and micromixing in a novel sonochemical reactor using high frequency ultrasound[J]. Chemical Engineering and Processing Process Intensification, 2011, 50 (8): 732- 740
doi: 10.1016/j.cep.2011.06.011
[15]   LEE J, ASHOKKUMAR M, KENTISH S E Influence of mixing and ultrasound frequency on antisolvent crystallisation of sodium chloride[J]. Ultrasonics Sonochemistry, 2014, 21 (1): 60- 68
doi: 10.1016/j.ultsonch.2013.07.005
[16]   YUE J, CHEN G, YUAN Q, et al Hydrodynamics and mass transfer characteristics in gas-liquid flow through a rectangular microchannel[J]. Chemical Engineering Science, 2007, 62 (7): 2096- 2108
doi: 10.1016/j.ces.2006.12.057
[17]   ITO Y, KOMORI S A vibration technique for promoting liquid mixing and reaction in a microchannel[J]. AIChE Journal, 2006, 52 (9): 3011- 3017
doi: 10.1002/aic.v52:9
[18]   BALACHANDRAN S, KENTISH S E, MAWSON R, et al Ultrasonic enhancement of the supercritical extraction from ginger[J]. Ultrasonics Sonochemistry, 2006, 13 (6): 471- 479
doi: 10.1016/j.ultsonch.2005.11.006
[19]   董正亚, 陈光文, 赵帅南, 等 声化学微反应器—超声和微反应器协同强化[J]. 化工学报, 2018, 69 (1): 102- 115
DONG Zheng-ya, CHEN Guang-wen, ZHAO Shuai-nan, et al Sonochemical microreactor-synergistic intensification of ultrasound and microreactor[J]. CIESC Journal, 2018, 69 (1): 102- 115
[20]   冯浩, 阎冀丰, 陈蓉, 等 扰流柱结构微反应器内两相流动及性能强化[J]. 工程热物理学报, 2016, (8): 1683- 1689
FENG Hao, YAN Ji-feng, CHEN Rong, et al Gas-liquid two phase flow and performance enhancement in microreactor with pin-fins configuration[J]. Journal of Engineering Thermophysics, 2016, (8): 1683- 1689
[21]   KOCKMANN N, KIEFER T, ENGLER M, et al Convective mixing and chemical reactions in microchannels with high flow rates[J]. Sensors and Actuators B: Chemical, 2006, 117 (2): 495- 508
doi: 10.1016/j.snb.2006.01.004
[22]   钟佳奇. 结构化表面约束流道内的磨粒群分布及其动力学特性研究[D]. 杭州: 浙江工业大学, 2011.
ZHONG Jia-qi. Research of distribution and dynamic characteristic of particle group in structural flow passage [D]. Hangzhou: Zhejiang University of Technology, 2011.
[23]   AKBARI M, RAHIMI M, FARYADI M Gas-liquid flow mass transfer in a T-shape microreactor stimulated with 1.7 MHz ultrasound waves[J]. Chinese Journal of Chemical Engineering, 2017, 25 (9): 1143- 1152
doi: 10.1016/j.cjche.2017.03.010
[24]   JI S M, GE J, TAN D P Wall contact effects of particle-wall collision process in a two-phase particle fluid[J]. Journal of Zhejiang University-Science A: Applied Physics and Engineering, 2017, 18 (12): 958- 973
[25]   TAN D P, LI L, ZHU Y L, et al Critical penetration condition and Ekman suction-extraction mechanism of a sink vortex[J]. Journal of Zhejiang University-Science A: Applied Physics and Engineering, 2018, 20 (1): 61- 72
[26]   ZHANG L, WANG J S, TAN D P, et al Gas compensation-based abrasive flow processing method for complex titanium alloy surfaces[J]. International Journal of Advanced Manufacturing Technology, 2017, 92 (9-12): 3385- 3397
doi: 10.1007/s00170-017-0400-4
[27]   LI J, JI S M, TAN D P Improved soft abrasive flow finishing method based on turbulent kinetic energy enhancing[J]. Chinese Journal of Mechanical Engineering, 2017, 30 (2): 301- 309
doi: 10.1007/s10033-017-0071-y
[28]   PEARSON B, FOXKEMPER B Log-normal turbulence dissipation in global ocean models[J]. Physical Review Letters, 2018, 120 (9): 094501
doi: 10.1103/PhysRevLett.120.094501
[29]   孙振国. 不同角度Y型汇流下蛇形微通道气液两相流实验研究[D]. 吉林: 东北电力大学, 2016.
SUN Zhen-guo. Experimental study on gas-liquid two phase flow in serpentine channels with different Y-type junction [D]. Jilin: Northeast DianLi University, 2016.
[1] Ya-fei WANG,Qun-xing HUANG,Fei WANG,Yong CHI,Jian-hua YAN. High-speed algorithm for accurate collision detection during particle aggregation[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1148-1156.