Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (5): 991-998    DOI: 10.3785/j.issn.1008-973X.2021.05.020
Numerical study on dynamic behaviors of Al2O3 nanofluid droplet impacting on solid wall
Ding-hua HU(),Shi-yu LIU
School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Download: HTML     PDF(1277KB) HTML
Export: BibTeX | EndNote (RIS)      


The dynamical behavior of nanofluid droplet impacting on the solid wall was numerically studied. A two-dimensional numerical model based on the phase-field method was established, and the Kistler dynamic contact angle model was introduced to describe the evolution of droplet contact angle and three-phase contact line during spreading. The influences of nanoparticle volume fraction, inertia force and droplet diameter on the spreading and retraction behaviors of water-based Al2O3 nanofluid droplets were studied in terms of spreading factor and dimensionless height. Results indicated that the nanoparticles with volume fraction over a certain value made the fluid exhibit obvious shear-thinning characteristics, which can increase the viscous dissipation of droplets and suppress the spreading and retraction process of droplets. The increase of droplet initial velocity would increase the maximum spreading diameter and the time to reach the stable state when it impacts on the solid surface, while the increase of droplet diameter would lengthen the oscillation period of the droplet. It is also found that the nanoparticles of 4% volume fraction can suppress the influence of increase of droplet initial velocity and diameter, and help the droplet faster to reach stable state.

Key wordsnanofluid      droplet      surface impingement      volume fraction      phase-field method     
Received: 12 May 2020      Published: 10 June 2021
CLC:  TQ 21.1  
Fund:  国家自然科学基金青年基金资助项目(51706102);中央高校基本科研业务费专项资金资助项目(30917011325)
Cite this article:

Ding-hua HU,Shi-yu LIU. Numerical study on dynamic behaviors of Al2O3 nanofluid droplet impacting on solid wall. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 991-998.

URL:     OR


针对纳米流体液滴撞击固体壁面的动力学行为,建立基于相场方法描述液滴动态过程的二维数值模型,引入Kistler动态接触角模型以模拟铺展过程中液滴动态接触角变化以及三相接触线的迁移. 通过模拟分析液滴铺展因子、无量纲高度的变化研究不同纳米颗粒体积分数、惯性力和液滴直径等因素对水基Al2O3纳米流体液滴撞击壁面的铺展回缩过程的影响机制. 结果表明:超过一定体积分数的纳米颗粒使流体表现出明显的剪切稀化特性,增加液滴的黏性耗散,抑制液滴的铺展回缩过程;液滴撞击速度的增加会增大其撞击壁面时最大铺展直径和达到稳定状态的耗时,直径的增加使液滴振荡周期加长;体积分数为4%的纳米颗粒可以抑制上述两者带来的影响,使液滴更快到达稳定状态.

关键词: 纳米流体,  液滴,  撞击壁面,  体积分数,  相场方法 
Fig.1 Physical model of liquid droplet impacting solid surface
$\varphi _{\rm{p}} $/% m n
1 0.0060 0.599
2 0.0118 0.614
3 0.0458 0.641
4 0.2562 0.678
Tab.1 Power-law parameters of nanodroplet
Fig.2 Mesh refinement for droplet
Fig.3 Verification of grid independence
Fig.4 Comparison and validation of droplet impingement experiments results[31-33] and simulation results based on proposed model
Fig.5 Variation curves of spreading factor for pure water droplets and nanofluid droplets with different nanoparticle volume fractions
Fig.6 Variation curves of dimensionless height for pure water droplets and nanofluid droplets with different nanoparticle volume fractions
Fig.7 Variation curves of spreading factor for pure water droplets and nanofluid droplets with different nanoparticle volume fractions at different initial velocities
Fig.8 Simulation results of pure water droplet and 4% volume fraction nano droplet at same time
Fig.9 Variation curves of spreading factor for pure water droplets and nanofluid droplets of different nanoparticle volume fractions with different droplet diameters
Fig.10 Maximum spreading factor of pure water droplets and nanofluid droplets of different nanoparticle volume fractions with different droplet diameters
[1]   WANG C H, TSAI H L, WU Y C, et al Investigation of molten metal droplet deposition and solidification for 3D printing techniques[J]. Journal of Micromechanics and Microengineering, 2016, 26 (9): 095012
doi: 10.1088/0960-1317/26/9/095012
[2]   PALM L, NILSSON J Impact on droplet placement on paper by the level of droplet flight stability in a continuous ink jet printer[J]. Journal of Imaging Science and Technology, 1998, 42 (6): 534- 540
[3]   DORR G J, WANG S, MAYO L C, et al Impaction of spray droplets on leaves: influence of formulation and leaf character on shatter, bounce and adhesion[J]. Experiments in Fluids, 2015, 56 (7): 143
doi: 10.1007/s00348-015-2012-9
[4]   ASAKAWA D, CHEN L C, HIRAOKA K The analysis of industrial synthetic polymers by electrospray droplet impact/secondary ion mass spectrometry[J]. Journal of Mass Spectrometry, 2009, 44 (6): 945- 951
doi: 10.1002/jms.1569
[5]   YARIN A L Drop impact dynamics: splashing, spreading, receding, ${\rm{bouncing}}\cdots $ [J]. Annu Rev Fluid Mech, 2006, 38: 159- 192
doi: 10.1146/annurev.fluid.38.050304.092144
[6]   RIOBOO R, TROPEA C, MARENGO M Outcomes from a drop impact on solid surfaces[J]. Atomization and sprays, 2001, 11 (2): 155- 165
[7]   杨宝海, 王宏, 朱恂, 等 速度对液滴撞击超疏水壁面行为特性的影响[J]. 化工学报, 2012, 63 (10): 3027- 3033
YANG Bao-hai, WANG Hong, ZHU Xun, et al Effect of velocity on the behavior of droplet impacting superhydrophobic wall[J]. CIESC Journal, 2012, 63 (10): 3027- 3033
doi: 10.3969/j.issn.0438-1157.2012.10.003
[8]   KANNANGARA D, SHEN W Roughness effects of cellulose and paper substrates on water drop impact and recoil[J]. Colloids Surfaces A: Physicochemical and Engineering Aspects, 2008, 330 (2/3): 151- 160
[9]   MAO T, KUHN D C, TRAN H Spread and rebound of liquid droplets upon impact on flat surfaces[J]. AIChE Journal, 1997, 43 (9): 2169- 2179
doi: 10.1002/aic.690430903
[10]   MARENGO M, ANTONINI C, ROISMAN I V, et al Drop collisions with simple and complex surfaces[J]. Current Opinion in Colloid and Interface Science, 2011, 16 (4): 292- 302
doi: 10.1016/j.cocis.2011.06.009
[11]   ?IKALO ?, GANI? E Phenomena of droplet: surface interactions[J]. Experimental Thermal and Fluid Science, 2006, 31 (2): 97- 110
doi: 10.1016/j.expthermflusci.2006.03.028
[12]   ?IKALO ?, MARENGO M, TROPEA C, et al Analysis of impact of droplets on horizontal surfaces[J]. Experimental Thermal and Fluid Science, 2002, 25 (7): 503- 510
doi: 10.1016/S0894-1777(01)00109-1
[13]   李维仲,?朱卫英,?权生林,?等 液滴撞击水平固体表面的可视化实验研究[J]. 热科学与技术, 2008, 7 (2): 155- 160
LI?Wei-zhong,?ZHU?Wei-ying,?QUAN Sheng-lin,?et?al Visual experimental study on droplet impacted onto horizontal solid surface[J]. Journal of Thermal Science and Technology, 2008, 7 (2): 155- 160
[14]   AN S M, LEE S Y Observation of the spreading and receding behavior of a shear-thinning liquid drop impacting on dry solid surfaces[J]. Experimental Thermal and Fluid Science, 2012, 37: 37- 45
doi: 10.1016/j.expthermflusci.2011.09.018
[15]   GUPTA A, KUMAR R Droplet impingement and breakup on a dry surface[J]. Computers and Fluids, 2010, 39 (9): 1696- 1703
doi: 10.1016/j.compfluid.2010.06.006
[16]   FUJIMOTO H, SHIOTANI Y, TONG A Y, et al Three-dimensional numerical analysis of the deformation behavior of droplets impinging onto a solid substrate[J]. International Journal of Multiphase Flow, 2007, 33 (3): 317- 332
doi: 10.1016/j.ijmultiphaseflow.2006.06.013
[17]   刘海龙, 沈学峰, 王睿, 等 纳米流体液滴撞击壁面铺展动力学特性研究[J]. 力学学报, 2018, 50 (5): 56- 63
LIU Hai-long, SHEN Xue-feng, WANG Rui, et al Research on spreading dynamics characteristics of nanofluid droplets impacting on wall[J]. Theoretical and Applied Mechanics, 2018, 50 (5): 56- 63
[18]   HAO C, ZHOU Y, ZHOU X, et al Dynamic control of droplet jumping by tailoring nanoparticle concentrations[J]. Applied Physics Letters, 2016, 109 (2): 021601
doi: 10.1063/1.4958691
[19]   SHEN X, LIU H, WANG R, et al. Numerical simulation of spreading characteristics for nanofluids droplet impinging on the solid surface [EB/OL]. [2020-05-01].
[20]   RAVIKUMAR S V, HALDAR K, JHA J M, et al Heat transfer enhancement using air-atomized spray cooling with water–Al2O3 nanofluid [J]. International Journal of Thermal Sciences, 2015, 96: 85- 93
doi: 10.1016/j.ijthermalsci.2015.04.012
[21]   朱冬生, 孙纪远, 宋印玺, 等 喷雾冷却技术综述及纳米流体喷雾应用前景[J]. 化工进展, 2009, 28 (3): 368- 373
ZHU Dong-sheng, SUN Ji-yuan, SONG Yin-xi, et al Overview of spray cooling technology and application prospects of nanofluid spray[J]. Chemical Industry and Engineering Progress, 2009, 28 (3): 368- 373
doi: 10.3321/j.issn:1000-6613.2009.03.002
[22]   PAK B C, CHO Y I Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles[J]. Experimental Heat Transfer and International Journal, 1998, 11 (2): 151- 170
doi: 10.1080/08916159808946559
[23]   ADRIANA M A Electrical and rheological behavior of stabilized Al2O3 nanofluids [J]. Current Nanoscience, 2013, 9 (1): 81- 88
[24]   YANG L, DU K Investigations of surface tension of binary nanofluids[J]. Advanced Materials Research, 2011, 347?353: 786- 790
doi: 10.4028/
[25]   CHINNAM J, DAS D K, VAJJHA R S, et al Measurements of the surface tension of nanofluids and development of a new correlation[J]. International Journal of Thermal Sciences, 2015, 98: 68- 80
doi: 10.1016/j.ijthermalsci.2015.07.008
[26]   YUE P, FENG J J, LIU C, et al A diffuse-interface method for simulating two-phase flows of complex fluids[J]. Journal of Fluid Mechanics, 2004, 515: 293- 317
doi: 10.1017/S0022112004000370
[27]   KISTLER S F Hydrodynamics of wetting[J]. Wettability, 1993, 6: 311- 430
[28]   CIE?LI?SKI J T, KRYGIER K A Sessile droplet contact angle of water-Al2O3, water-TiO2 and water-Cu nanofluids [J]. Experimental Thermal and Fluid Science, 2014, 59: 258- 263
doi: 10.1016/j.expthermflusci.2014.06.004
[29]   DAS P K, ISLAM N, ZAKARIA K, et al. Measurement of surface tension and contact angle of different nanofluids: an experimental study [C]// Proceedings of the Proceedings of the 24th National and 2nd International ISHMT-ASTFE Heat and Mass Transfer Conference. Kolkata: Begel House Inc, 2017: 2441-2448.
[30]   KIM S J, BANG I C, BUONGIORNO J, et al Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux[J]. International Journal of Heat and Mass Transfer, 2007, 50 (19/20): 4105- 4116
[31]   ZANG D, WANG X, GENG X, et al Impact dynamics of droplets with silica nanoparticles and polymer additives[J]. Soft Matter, 2012, 9 (2): 394- 400
[32]   GERMAN G, BERTOLA V Impact of shear-thinning and yield-stress drops on solid substrates[J]. Journal of Physics: Condensed Matter, 2009, 21 (37): 375111
doi: 10.1088/0953-8984/21/37/375111
[33]   杨舒生. 液滴撞击碳纳米管阵列表面动态特性的实验与数值模拟研究[D]. 镇江: 江苏大学, 2018.
YANG Shu-sheng. Experimental and numerical simulation research on the dynamic characteristics of droplets impacting the surface of carbon nanotube array [D]. Zhenjiang: Jiangsu University, 2018.
[34]   LI Y, WANG F, LIU H, et al Nanoparticle-tuned spreading behavior of nanofluid droplets on the solid substrate[J]. Microfluidics and Nanofluidics, 2015, 18 (1): 111- 120
doi: 10.1007/s10404-014-1422-y
[35]   BERGERON V, BONN D, MARTIN J Y, et al Controlling droplet deposition with polymer additives[J]. Nature, 2000, 405 (6788): 772- 775
doi: 10.1038/35015525
[36]   DUURSMA G, SEFIANE K, KENNEDY A Experimental studies of nanofluid droplets in spray cooling[J]. Heat Transfer Engineering, 2009, 30 (13): 1108- 1120
doi: 10.1080/01457630902922467
[37]   RIOBOO R, MARENGO M, TROPEA C Time evolution of liquid drop impact onto solid, dry surfaces[J]. Experiments in Fluids, 2002, 33 (1): 112- 124
doi: 10.1007/s00348-002-0431-x
[38]   SMITH M, BERTOLA V Effect of polymer additives on the wetting of impacting droplets[J]. Physical Review Letters, 2010, 104 (15): 154502
doi: 10.1103/PhysRevLett.104.154502
[1] Jing-zhi ZHANG,Wu-kai CHEN,Nai-xiang ZHOU,Li LEI,Fu-shun LIANG. Experiment study on formation and length of droplets in T-junction microchannels[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 1007-1013.
[2] Si-yuan XU,Jun DU,Guang-xi ZHAO,Zheng-ying WEI. Droplet transfer behavior in fused-deposition of 45 steel/tin lead alloy bimetallic structures[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2224-2232.
[3] Ying-ying WEI,Dong-yue JIANG,Qing-teng FU,Fei GUO. Behaviors of aerosol oil droplets on modified PAN fibrous webs[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 196-201.
[4] Shu-xin LIU,Zhong-yang LUO,Meng-shi LU,Ming-chun HE,Meng-xiang FANG,Hao-lin WANG. Process and characteristics of capture of particles by charged droplet and acoustic waves[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1282-1290.
[5] Yong-xiang GAO,Du HONG,You-wei CHENG,Li-jun WANG,Xi LI. Experimental and numerical simulation on sequential three phase jet-loop reactor[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 997-1005.
[6] Chao SUN,De-qing MEI,Xing XU,Li-chang LI,Yin-nan YUAN. Evaporation characteristics of sessile droplet for fuel with CNT on a heated substrate[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 234-240.
[7] Xiao-qiang XIE,Jian-guo YANG,Chao-yang ZHU,Chuan-huai LIU,Hong ZHAO,Zhi-hua WANG. Effect of bowl-shaped secondary air distribution on combustion efficiency and NOx mass concentration[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 220-227.
[8] DAI Chao, JI Xian-bing, ZHOU Dong-dong, WANG Ye, XU Jin-liang. Behavioral characteristics of droplet collision to different wettability surfaces[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(1): 36-42.
[9] SHENG De ren, SU Yun peng, SHI Xiang kun, CHEN Jian hong, LI Wei. Optical breakdown model of atomized water droplet induced by laser[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(5): 949-954.
[10] WANG Tao, WANG Liang, LIN Gui ping, BAI Li zhan, LIU Xiang yang, BU Xue qin, XIE Guang hui. Experimental study on performance of liquid cooling garment with application of titanium dioxide nanofluids[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(4): 681-690.
[11] CHEN Ling hong, YAN Ming ming, WU Jian, WU Xue cheng, DONG Cui wei, CEN Ke fa. Soot volume fraction measurement in partially premixed flames using digital camera[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(11): 2069-2076.
[12] XU Shao-feng, WANG Jiu-gen. Effect of chain rigidity on the flow of macromolecular solution in micro-and nanochannels[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(8): 1406-1410.
[13] LOU Bin, XU Xu, WANG Wen-long, WANG Yu-fei, FAN Li-wu, YU Zi-tao. Natural convection heat transfer of aqueous nanofluids with carbon nanotubes in a rectangular enclosure[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(12): 2196-2201.
[14] TIAN Chen, WANG Qin-hui, CHENG Le-ming, LUO Zhong-yang, NI Ming-jiang. Experimental investigation on local particle volume fractions
distribution in offset-exit circulating fluidized bed
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(4): 577-583.
[15] HUANG Fang, YU Zi-tao, SHUAI Ou, HU Ya-cai, XIE Ning. Carbon nanotube nanofluid's stability with uniform design method[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(7): 1254-1258.