The granulated blast furnace slag was used to replace part of cement to prepare steam free reactive powder concrete (RPC), in order to overcome the disadvantage of traditional reactive powder concrete (RPC) that needs high temperature steam curing. The impact compression experiment of steam free RPC was carried out by using split Hopkinson pressure bar system (SHPB) with diameter of 80 mm, the influence of rate effect on the dynamic mechanical properties of steam free RPC was explored at the same time, and the dynamic constitutive model was established based on the experimental results. Results show that in the strain rate range of 10~290 $ {{\rm{s}}^{ - 1}}$, the peak stress, the peak strain and the impact toughness of the steam free RPC show obvious rate sensitivity, while the elastic modulus remains unchanged under different strain rates. On the aspect of constitutive model, both the improved Z-W-T viscoelastic constitutive model and the Weibull distribution-based model can well describe the dynamic stress-strain curve of steam free RPC. Due to the relatively fewer parameters Weibull distribution-based model contains, the stress-strain curve under different strain rates can be predicted based on the known relationship between parameters and strain rate in the model.
Lei XIE,Qing-hua LI,Shi-lang XU. Dynamic compressive properties and constitutive model of reactive powder concrete. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 999-1009.
Fig.2Schematic diagram of split Hopkinson pressure bar
Fig.3Average stress-strain curve under different impact pressures
Fig.4Dynamic peak stress and DIF with different strain rates
Fig.5Relationship between peak strain and strain rates
Fig.6Comparison between energy absorption of different kinds of ultra high performance concrete
Fig.7Proportion of stages under varied impact pressures
Fig.8Nonlinear viscoelastic constitutive model
Fig.9Comparison between theoretical stress-strain curves based on improved Z-W-T model and experimental curves
$ \dot{\varepsilon } $/ ${{\rm{s}}^{ - 1}}$
${E^{'}}$/GPa
${E_2}$/GPa
${\theta _2}$/μs
$m$
$n/ {10^{ - 3}}$
${\varepsilon _{\rm{th}}}/{10^{ - 3}}$
$k$
10.57
287.360
?174.1000
?331.3900
0.8290
6.100
1.550
165.110
92.57
11.464
144.6740
9.7676
1.3390
1.030
2.247
41.889
140.10
?6.563
146.8910
11.4730
0.9355
11.777
2.016
40.737
175.60
?55.573
187.1640
15.8260
0.3990
106.628
2.205
174.509
200.27
?50.976
178.6470
14.8670
0.4050
104.193
2.331
165.410
265.80
?267.832
394.8950
34.2050
0.3240
88.225
3.240
176.505
289.43
?112.749
244.3337
17.3725
0.3770
91.451
3.402
174.322
Tab.1Fitted parameters of Z-W-T model
Fig.10Variation curves of damage variables with strain at different strain rates
Fig.11Elastic modulus under different strain rates
Fig.12Comparison between theoretical stress-strain curves based on modified Weibull distribution and experimental curves
Fig.13Comparison between predicted and experimental curves for dynamic stress-strain relationships of reactive powder concrete
[1]
RICHARD P, CHEYREZY M Composition of reactive powder concretes[J]. Cement and Concrete Research, 1995, 25 (7): 1501- 1511
doi: 10.1016/0008-8846(95)00144-2
[2]
MAROLIYA M K Micro structure analysis of reactive powder concrete[J]. International Journal of Engineering Research and Development, 2012, 4 (2): 68- 77
[3]
吴炎海, 何雁斌 活性粉末混凝土(RPC200)的配制试验研究[J]. 中国公路学报, 2003, (4): 45- 50 WU Yan-hai, HE Yan-bin Experimental study on the preparation of reactive powder concrete (RPC200)[J]. Chinese Journal of Highway and Transport, 2003, (4): 45- 50
[4]
郑文忠, 李莉 活性粉末混凝土配制及其配合比计算方法[J]. 湖南大学学报: 自然科学版, 2009, 36 (2): 13- 17 ZHENG Wen-zhong, LI Li The preparation of reactive powder concrete and the calculation method of its mixing ratio[J]. Journal of Hunan University: Natural Science Edition, 2009, 36 (2): 13- 17
[5]
SULEIMAN M T, VANDE V T, SRITHARAN S Behavior of driven ultrahigh-performance concrete H-piles subjected to vertical and lateral loadings[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136 (10): 1403- 1413
doi: 10.1061/(ASCE)GT.1943-5606.0000350
[6]
NGO T, MENDIS P, KRAUTHAMMER T Behavior of ultrahigh-strength prestressed concrete panels subjected to blast loading[J]. Journal of Structural Engineering, 2007, 133 (11): 1582- 1590
doi: 10.1061/(ASCE)0733-9445(2007)133:11(1582)
[7]
HOU X, CAO S, ZHENG W, et al Experimental study on dynamic compressive properties of fiber-reinforced reactive powder concrete at high strain rates[J]. Engineering Structures, 2018, 169: 119- 130
doi: 10.1016/j.engstruct.2018.05.036
[8]
王勇华, 梁小燕, 王正道, 等 活性粉末混凝土冲击压缩性能实验研究[J]. 工程力学, 2008, (11): 167- 172 WANG Yong-hua, LIANG Xiao-yan, WANG Zheng-dao, et al Experimental study on impact compression properties of reactive powder concrete[J]. Engineering Mechanics, 2008, (11): 167- 172
[9]
黄政宇, 王艳, 肖岩, 等 应用SHPB试验对活性粉末混凝土动力性能的研究[J]. 湘潭大学自然科学学报, 2006, (2): 113- 117 HUANG Zheng-yu, WANG Yan, XIAO Yan, et al Research on dynamic performance of reactive powder concrete by SHPB test[J]. Journal of Natural Science of Xiangtan University, 2006, (2): 113- 117
doi: 10.3969/j.issn.1000-5900.2006.02.025
[10]
任兴涛, 周听清, 钟方平, 等 钢纤维活性粉末混凝土的动态力学性能[J]. 爆炸与冲击, 2011, 31 (5): 540- 547 REN Xing-tao, ZHOU Ting-qing, ZHONG Fang-ping, et al Dynamic mechanical properties of steel fiber activated powder concrete[J]. Explosion and Shock, 2011, 31 (5): 540- 547
[11]
赖建中, 孙伟, 戎志丹 活性粉末混凝土在多次冲击荷载下的力学行为[J]. 爆炸与冲击, 2008, 28 (6): 532- 538 LAI Jian-zhong, SUN Wei, RONG Zhi-dan Mechanical behavior of reactive powder concrete under multiple impact loads[J]. Explosion and Impact, 2008, 28 (6): 532- 538
doi: 10.3321/j.issn:1001-1455.2008.06.009
[12]
YAZ?C? H, YARD?MC? M Y, YI?ITER H, et al Mechanical properties of reactive powder concrete containing high volumes of ground granulated blast furnace slag[J]. Cement and Concrete Composites, 2010, 32 (8): 639- 648
doi: 10.1016/j.cemconcomp.2010.07.005
[13]
何晓雁, 秦立达, 张淑艳, 等 基于正交理论的玄武岩纤维活性粉末混凝土配合比设计[J]. 硅酸盐通报, 2016, 35 (5): 1402- 1406 HE Xiao-yan, QIN Li-da, ZHANG Shu-yan, et al Mix design of basalt fiber reactive powder concrete based on orthogonal theory[J]. Bulletin of Silicates, 2016, 35 (5): 1402- 1406
[14]
龙广成, 陈瑜 RPC200的强度及收缩影响研究[J]. 工业建筑, 2002, (6): 4- 7 LONG Guang-cheng, CHEN Yu Study on the effect of factors on strength and shrinkage of RPC200[J]. Industrial Buildings, 2002, (6): 4- 7
doi: 10.3321/j.issn:1000-8993.2002.06.002
[15]
林清, 吴炎海, 姚良云 钢纤维活性粉末混凝土受压性能试验研究[J]. 福建建筑, 2005, (3): 95- 98 LIN Qing, WU Yan-hai, YAO Liang-yun Experimental research on compressive properties of steel fiber RPC[J]. Fujian Architecture, 2005, (3): 95- 98
[16]
孙蓓, 焦楚杰 自然养护活性粉末混凝土单轴受压的试验研究[J]. 工业建筑, 2019, 49 (2): 114- 118 SUN Bei, JIAO Chu-jie Experimental study on uniaxial compression of natural curing active powder concrete[J]. Industrial Construction, 2019, 49 (2): 114- 118
[17]
胡曙光, 彭艳周, 陈凯, 等 掺钢渣活性粉末混凝土的制备及其变形性能[J]. 武汉理工大学学报, 2009, 31 (1): 26- 29 HU Shu-guang, PENG Yan-zhou, CHEN Kai Preparation and deformation performance of reactive powder concrete (RPC) with steel slag powder[J]. Journal of Wuhan University of Technology, 2009, 31 (1): 26- 29
doi: 10.3963/j.issn.1671-4431.2009.01.008
[18]
KAI M, XIAO Y, SHUAI X L, et al Compressive behavior of engineered cementitious composites under high strain-rate loading[J]. Journal of Materials in Civil Engineering, 2016, 29 (4): 4016254
[19]
CHEN Z, YANG Y, YAO Y Quasi-static and dynamic compressive mechanical properties of engineered cementitious composite incorporating ground granulated blast furnace slag[J]. Materials and Design, 2013, 44: 500- 508
doi: 10.1016/j.matdes.2012.08.037
[20]
CHEN X, GE L, ZHOU J, et al Experimental study on split hopkinson pressure bar pulse-shaping techniques for concrete[J]. Journal of Materials in Civil Engineering, 2015, 4015196
[21]
CAO S, HOU X, RONG Q, et al Effect of specimen size on dynamic compressive properties of fiber-reinforced reactive powder concrete at high strain rates[J]. Construction and Building Materials, 2019, 194: 71- 82
doi: 10.1016/j.conbuildmat.2018.11.024
[22]
王立闻, 庞宝君, 盖秉政, 等 活性粉末混凝土高温后冲击压缩特性研究[J]. 工程力学, 2012, 29 (9): 245- 251 WANG Li-wen, PANG Bao-jun, GAI Bing-zheng, et al Research on impact compression properties of reactive powder concrete after high temperature[J]. Engineering Mechanics, 2012, 29 (9): 245- 251
doi: 10.6052/j.issn.1000-4750.2010.12.0938
[23]
TAI Y Uniaxial compression tests at various loading rates for reactive powder concrete[J]. Theoretical and Applied Fracture Mechanics, 2009, 52 (1): 14- 21
doi: 10.1016/j.tafmec.2009.06.001
[24]
王勇华. 活性粉末混凝土冲击压缩性能研究[D]. 北京: 北京交通大学, 2008. WANG Yong-hua. Research on impact compression properties of reactive powder concrete [D]. Beijing: Beijing Jiaotong University, 2008.
[25]
WANG W, HU Y, REN X, et al. Experimental investigation on dynamic mechanical performances of granite [C]// International Society for Rock Mechanics and Rock Engineering, 2011.
[26]
DONG S, HAN B, OU J, et al Electrically conductive behaviors and mechanisms of short-cut super-fine stainless wire reinforced reactive powder concrete[J]. Cement and Concrete Composites, 2016, 72: 48- 65
doi: 10.1016/j.cemconcomp.2016.05.022
[27]
JIAO C, SUN W Impact resistance of reactive powder concrete[J]. Journal of Wuhan University of Technology: Materials Science Edition, 2015, 30 (4): 752- 757
doi: 10.1007/s11595-015-1223-5
[28]
JIAO C, SUN W, HUAN S, et al Behavior of steel fiber-reinforced high-strength concrete at medium strain rate[J]. Frontiers of Architecture and Civil Engineering in China, 2009, 3 (2): 131- 136
doi: 10.1007/s11709-009-0027-0
[29]
ZHANG W, ZHANG Y, ZHANG G Single and multiple dynamic impacts behaviour of ultra-high performance cementitious composite[J]. Journal of Wuhan University of Technology: Materials Science Edition, 2011, 26 (6): 1227- 1234
doi: 10.1007/s11595-011-0395-x
[30]
LAI J, SUN W Dynamic behaviour and visco-elastic damage model of ultra-high performance cementitious composite[J]. Cement and Concrete Research, 2009, 39 (11): 1044- 1051
doi: 10.1016/j.cemconres.2009.07.012
[31]
张华, 郜余伟, 李飞, 等 高应变率下聚丙烯纤维混凝土动态力学性能和本构模型[J]. 中南大学学报: 自然科学版, 2013, 44 (8): 3464- 3473 ZHANG Hua, GAO Yu-wei, LI Fei, et al Dynamic mechanical properties and constitutive model of polypropylene fiber concrete under high strain rate[J]. Journal of Central South University: Natural Science Edition, 2013, 44 (8): 3464- 3473
[32]
朱兆祥, 徐大本, 王礼立 环氧树脂在高应变率下的热黏弹性本构方程和时温等效性[J]. 宁波大学学报: 理工版, 1988, (1): 58- 68 ZHU Zhao-xiang, XU Da-ben, WANG Li-li Thermoviscoelastic constitutive equation and time-temperature equivalence of epoxy resin at high strain rate[J]. Journal of Ningbo University: Science and Technology Edition, 1988, (1): 58- 68
[33]
WANG Z, LIU Y, SHEN R Stress-strain relationship of steel fiber-reinforced concrete under dynamic compression[J]. Construction and Building Materials, 2008, 22 (5): 811- 819
doi: 10.1016/j.conbuildmat.2007.01.005
[34]
ZHANG H, LIU Y, SUN H, et al Transient dynamic behavior of polypropylene fiber reinforced mortar under compressive impact loading[J]. Construction and Building Materials, 2016, 111: 30- 42
doi: 10.1016/j.conbuildmat.2016.02.049
[35]
李夕兵, 王世鸣, 宫凤强, 等 不同龄期混凝土多次冲击损伤特性试验研究[J]. 岩石力学与工程学报, 2012, 31 (12): 2465- 2472 LI Xi-bing, WANG Shi-ming, GONG Feng-qiang, et al Experimental study on multiple impact damage characteristics of concrete of different ages[J]. Journal of Rock Mechanics and Engineering, 2012, 31 (12): 2465- 2472
doi: 10.3969/j.issn.1000-6915.2012.12.010
[36]
ZHANG H, WANG B, XIE A, et al Experimental study on dynamic mechanical properties and constitutive model of basalt fiber reinforced concrete[J]. Construction and Building Materials, 2017, 152: 154- 167
doi: 10.1016/j.conbuildmat.2017.06.177
[37]
DONG S, HAN B, YU X, et al Dynamic impact behaviors and constitutive model of super-fine stainless wire reinforced reactive powder concrete[J]. Construction and Building Materials, 2018, 184: 602- 616
doi: 10.1016/j.conbuildmat.2018.07.027
[38]
吴政, 张承娟 单向荷载作用下岩石损伤模型及其力学特性研究[J]. 岩石力学与工程学报, 1996, (1): 55- 61 WU Zheng, ZHANG Cheng-juan Research on rock damage model and its mechanical properties under unidirectional load[J]. Journal of Rock Mechanics and Engineering, 1996, (1): 55- 61
doi: 10.3321/j.issn:1000-6915.1996.01.008