Please wait a minute...
J4  2011, Vol. 45 Issue (7): 1254-1258    DOI: 10.3785/j.issn.1008-973X.2011.07.019
    
Carbon nanotube nanofluid's stability with uniform design method
HUANG Fang, YU Zi-tao, SHUAI Ou, HU Ya-cai, XIE Ning
Institute of Thermal Engineering and Power System, Zhejiang University, Hangzhou 310027, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The interactional and quantitative influences of four factors, mass fraction of carbon nanotube, mass fraction of dispersant, pH value and ultrasonic vibration time, on the stability of carbon nanotube nanofluid were analyzed. Twelve specific sample nanofluids were prepared and their Zeta potentials were measured. Sample values were determined by uniform design method and the stability was evaluated by Zeta potential. The quadratic polynomial stepwise regressive method was applied to dataprocessing; and a regression model between the nanofluid’s stability and four influence factors was established. Results showed that one factor’s influence on nanofluid’s stability was restrained by others. When ultrasonic vibration time was more than 3.411 hours, the stability of the nanofluid was positively correlated to the mass fraction of carbon nanotube; while ultrasonic vibration time was less than 3.411 hours, it was negatively correlated.



Published: 01 July 2011
CLC:  TB 32  
Cite this article:

HUANG Fang, YU Zi-tao, SHUAI Ou, HU Ya-cai, XIE Ning. Carbon nanotube nanofluid's stability with uniform design method. J4, 2011, 45(7): 1254-1258.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2011.07.019     OR     https://www.zjujournals.com/eng/Y2011/V45/I7/1254


基于均匀设计法的碳纳米管纳米流体稳定性

研究碳纳米管质量分数、分散剂质量分数、pH值和超声振荡时间对碳纳米管纳米流体稳定性的交互影响和定量影响.配置12个碳纳米管纳米流体样品,测定各样品的Zeta电位值.样品的4因素取值通过均匀设计法确定,稳定性用Zeta电位表征.采用二次多项式逐步回归法处理数据,建立碳纳米管纳米流体稳定性与4个因素之间的回归模型.由模型分析可知,该4因素对碳纳米管纳米流体稳定性的影响是相互约束的.当超声振荡时间>3.411 h时,碳纳米管纳米流体的稳定性与碳纳米管质量分数正相关;当超声振荡时间<3.411 h时,碳纳米管纳米流体的稳定性与碳纳米管质量分数负相关.

[1] CHOI S U S. Enhancing thermal conductivity of fluids with nanoparticles [C]∥Developments and Applications of NonNewtonian Flows. New York: ASME, 1995: 99-105.
[2] 张巧慧, 朱华. 新型传热工质纳米流体的研究与应用[J]. 能源工程, 2006(2): 52-54.
ZHANG Qiaohui, ZHU Hua. The investigations and applications of nanofluids [J]. Energy Engineering, 2006(2): 52-54.
[3] 洪欢喜, 武卫东, 盛伟, 等. 纳米流体制备的研究进展[J]. 化工进展, 2008, 27(12): 1923-1927.
HONG Huanxi, WU Weidong, SHENG Wei, et al. Research progress of preparation of nanofluids [J]. Chemical Industry and Engineering Progress, 2008, 27(12): 1923-1927.
[4] 彭小飞, 俞小莉, 夏立峰, 等. 纳米流体悬浮稳定性影响因素[J]. 浙江大学学报: 工学版, 2007, 41(4): 577-580.
PENG Xiaofei, YU Xiaoli, XIA Lifeng, et al.Influence factors on suspension stability of nanofluids [J]. Journal of Zhejiang University: Engineering Science, 2007, 41(4): 577-580.
[5] PRAJESH B. Thermal conductivity and colloidal stability of nanofluids [D].United State: Arizona State University, 2005: 1-13.
[6] 郝素菊, 张玉柱, 蒋武峰, 等. 含碳纳米管悬浮液的稳定性[J]. 东北大学学报:自然科学版, 2007, 28(10): 1438-1441.
HAO Suju, ZHANG Yuzhu, JIANG Wufeng, et al. Stability of aqueous suspension containing carbon nanotubes [J]. Journal of Northeastern University: Natural Science, 2007, 28(10): 1438-1441.
[7] 薛怀生, 樊建人, 胡亚才, 等. 多壁碳纳米管悬浮液沸腾换热性能研究[D]. 杭州: 浙江大学, 2007: 1-43.
XUE Huaisheng, FAN Jianren, HU Yacai, et al. Investigation into the boiling heat transfer performance of multiwalled carbon nanotube suspention [D]. Hangzhou: Zhejiang University, 2007: 1-43.
[8] RAJDIP B. Stabilization of individual carbon nanotubes in aqueous solutions [J]. Nano Letters, 2002, 2(1): 25-28.
[9] 周细应, 李卫红, 何亮. 纳米颗粒的分散稳定性及其评估方法[J]. 材料保护, 2006, 39(6): 51-54.
ZHOU Xiying, LI Weihong, HE Liang. Dispersion stability of nanoparticals and its evaluation methods [J]. Materials Protection, 2006, 39(6): 51-54.
[10] 王玉方. 均匀设计版本300 用户手册[EB/OL]. [20091126]. http:∥www.onlinedown.net/soft/13899.htm.
[11] DPS使用教程[EB/OL]. [20091126]. http:∥download.csdn.net/source/1113046.
[12] 郭顺松, 岑可法, 骆仲泱. 纳米流体的热物理特性研究[D]. 杭州: 浙江大学, 2006: 1-20.
GUO Shunsong, CEN Kefa, LUO Zhongyang. The research on thermophysical characteristic of nanofluids [D]. Hangzhou:Zhejiang University, 2006: 1-20.

No related articles found!