Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (7): 1282-1290    DOI: 10.3785/j.issn.1008-973X.2019.07.006
Mechanical and Energy     
Process and characteristics of capture of particles by charged droplet and acoustic waves
Shu-xin LIU(),Zhong-yang LUO*(),Meng-shi LU,Ming-chun HE,Meng-xiang FANG,Hao-lin WANG
College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(1557KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A microscopic visualization system was constructed to observe the movement and capture of particles around a charged single droplet under electric and acoustic field. Ash from Banshan Power Plant was used as representative particles. A laser particle size analyzer was used to verify the effect of agglomeration. The experimental results show that the inertial capture can be changed to attraction dominated by electrostatic forces (dielectrophoretic force, Coulomb force) by charging the droplet, and particle deposition on the surface of droplet changes from dendritic to tightly stacked. The trajectories of particles show reciprocating vibrations when adding acoustic field. The electrostatic force and liquid bridge force introduced by the charged droplets can enhance the internal adhesion of agglomerates. Further particle size distribution experiments show that both charged droplets and sound waves can effectively promote the agglomeration of particles.



Key wordscharged droplet      acoustic field      trajectory      capture      agglomeration     
Received: 12 September 2018      Published: 25 June 2019
CLC:  TB 89  
  X 513  
Corresponding Authors: Zhong-yang LUO     E-mail: liusx@zju.edu.cn;zyluo@zju.edu.cn
Cite this article:

Shu-xin LIU,Zhong-yang LUO,Meng-shi LU,Ming-chun HE,Meng-xiang FANG,Hao-lin WANG. Process and characteristics of capture of particles by charged droplet and acoustic waves. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1282-1290.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.07.006     OR     http://www.zjujournals.com/eng/Y2019/V53/I7/1282


荷电液滴联合声波捕集颗粒物的过程和特性

搭建显微可视化平台,观测以半山电厂灰为代表的颗粒物在电场及声场作用下相对于悬垂荷电单液滴的运动和捕集特性,利用激光粒度仪对颗粒物的凝并效果进行验证. 实验结果显示:对液滴进行荷电,可以将以惯性捕集为主要作用的灰颗粒绕流运动变为以静电力(介电泳力、库仑力)为主导的吸引作用,颗粒物在液滴表面的沉积状态由树枝状变为紧密堆积状态,而增加声场后,在颗粒初始轨迹之上叠加了往复的振动. 荷电液滴引入的静电力和液桥力强化了团聚体内部的黏附作用. 进一步的粒径分布表征实验发现,荷电液滴和声波的加入均可以有效促进颗粒的团聚长大.


关键词: 荷电液滴,  声场,  运动轨迹,  捕集,  团聚 
Fig.1 Visualization system of particle movement
Fig.2 Experimental system for characterizing particle size variation
Fig.3 Droplet in visualization experiment
Fig.4 Initial size of ash particles and droplets in experiment of particle size characterization
Fig.5 Trajectories and deposition morphology of particles when droplet and ash particles are both uncharged
Fig.6 Trajectories and deposition morphology of particles when droplet and ash particles are unilaterally charged
Fig.7 Trajectories and deposition morphology of particles when droplet and ash particles are differently charged
Fig.8 Trajectories and deposition morphology of particles with acoustic effect only
Fig.9 Trajectories and deposition morphology of particles with electro-acoustic joint effect
Fig.10 Change of particle size under charged conditions
Fig.11 Change of particle size under electron-acoustic joint conditions
Fig.12 Change of initial particle size peak percentage and D50
Fig.13 Comparison of Van der Waals force and liquid bridge force
[1]   姜磊, 周海峰, 赖志柱, 等 中国城市PM2.5时空动态变化特征分析: 2015-2017年 [J]. 环境科学学报, 2018, 38 (10): 3816- 3825
JIANG Lei, ZHOU Hai-feng, LAI Zhi-zhu, et al Analysis of spatio-temporal characteristic of PM2.5 concentrations of Chinese cities: 2015-2017 [J]. Acta Scientiae Circumstantiae, 2018, 38 (10): 3816- 3825
[2]   喻峥嵘, 杨春 雾霾天气对交通运输的影响及应对措施[J]. 科技视界, 2016, (07): 245+257
YU Zheng-rong, YANG Chun Influence of haze weather on transportation and its countermeasures[J]. Science and Technology Vision, 2016, (07): 245+257
[3]   李丽珍, 曹露, 王磊, 等 谈中国PM2.5的污染来源及危害 [J]. 能源与节能, 2013, (04): 77- 78
LI Li-zhen, CAO Lu, WANG Lei, et al On the pollution sources and hazards of PM2.5 in China [J]. Energy and Energy Conservation, 2013, (04): 77- 78
doi: 10.3969/j.issn.2095-0802.2013.04.034
[4]   王银生, 王英敏 静电喷雾除尘适于微细粉尘的理论分析[J]. 东北大学学报, 1996, 17 (03): 79- 82
WANG Yin-sheng, WANG Ying-min Theoretical analysis of electrostatic spray used for fine dust removal[J]. Journal of Northeastern University, 1996, 17 (03): 79- 82
[5]   BALACHANDRAN W, JAWOREK A, KRUPA A, et al Efficiency of smoke removal by charged water droplets[J]. Journal of Electrostatics, 2003, 58 (3/4): 209- 220
[6]   JAWOREK A, KRUPA A, SOBCZYK A T, et al Submicron particles removal by charged sprays[J]. Journal of Electrostatics, 2013, 71 (3): 345- 350
doi: 10.1016/j.elstat.2012.11.028
[7]   蔡萌, 程道来, 胡惠敏, 等 不同粒径分布粉煤灰声团聚的最佳频率[J]. 工业安全与环保, 2017, 43 (04): 52- 55
CAI Meng, CHENG Dao-lai, HU Hui-min, et al Optimal frequency of acoustic agglomeration of fly ash with different particle size distribution[J]. Industrial Safety and Environmental Protection, 2017, 43 (04): 52- 55
doi: 10.3969/j.issn.1001-425X.2017.04.015
[8]   王洁, 张光学, 刘建忠, 等 种子颗粒对声波团聚效率的影响[J]. 化工学报, 2011, 62 (02): 355- 361
WANG Jie, ZHANG Guang-xue, LIU Jian-zhong, et al Effect of seed particles on acoustic agglomeration efficiency[J]. Journal of Chemical Industry and Engineering, 2011, 62 (02): 355- 361
[9]   康豫博, 朱益佳, 蔺锋, 等 超细颗粒物超声波团聚的影响因素[J]. 上海交通大学学报, 2016, 50 (04): 551- 556
KANG Yu-bo, ZHU Yi-jia, LIN Feng, et al Influencing factors of acoustic agglomeration of ultrafine particles[J]. Journal of Shanghai Jiaotong University, 2016, 50 (04): 551- 556
[10]   左子文. 荷电液滴捕集颗粒物机理和特性的研究[D]. 镇江: 江苏大学, 2016.
ZUO Zi-wen. Study on Mechanism and characteristics of Charged droplet used for particulate matter capture [D]. Zhenjiang: Jiangsu University, 2016.
[11]   KIM J H, LEE H S, KIM H H, et al Electrospray with electrostatic precipitator enhances fine particles collection efficiency[J]. Journal of Electrostatics, 2010, 68 (4): 305- 310
doi: 10.1016/j.elstat.2010.03.002
[12]   MARKAUSKAS D, MAKNICKAS A, KA?IANAUSKAS R Simulation of acoustic particle agglomeration in poly-dispersed aerosols[J]. Procedia Engineering, 2015, 102: 1218- 1225
doi: 10.1016/j.proeng.2015.01.249
[13]   SARABIA R F D, GALLEGO-JUáREZ J A, ACOSTA- APARICIO V M, et al Acoustic agglomeration of submicron particles in diesel exhausts: first results of the influence of humidity at two acoustic frequencies[J]. Journal of Aerosol Science, 2000, 31: 827- 828
doi: 10.1016/S0021-8502(00)90837-1
[14]   左子文, 王军锋, 霍元平, 等 细颗粒物撞击荷电液滴的研究[J]. 中国科学院大学学报, 2017, 34 (02): 259- 264
ZUO Zi-wen, WANG Jun-feng, HUO Yuan-ping, et al Study of fine particles impacting a pendant charged droplet[J]. Journal of University of Chinese Academy of Sciences, 2017, 34 (02): 259- 264
[15]   SUMIYOSHITANI S, OKADA T, HARA M, et al Direct observation of the collection process for dust particles from an air stream by a charged water droplet[J]. IEEE Transactions on Industry Applications, 1984, (2): 274- 281
[16]   张光学, 朱颖杰, 周涛涛, 等 喷雾对促进细颗粒物声波团聚的影响[J]. 化工学报, 2017, 68 (03): 864- 869
ZHANG Guang-xue, ZHU Ying-jie, ZHOU Tao-tao, et al Improve acoustic agglomeration of fine particles by droplet spray[J]. Journal of Chemical Industry and Engineering, 2017, 68 (03): 864- 869
[17]   黄斌, 姚强, 赵海亮, 等 飞灰在单纤维上形成颗粒链的生长和形貌[J]. 清华大学学报: 自然科学版, 2006, (05): 662- 665
HUANG Bin, YAO Qiang, ZHAO Hai-liang, et al Growth and morphosis of particle chains during fly ash loading on a single fiber[J]. Journal of Tsinghua University: Science and Technology, 2006, (05): 662- 665
[18]   郭硕鸿. 电动力学[M]. 3版. 北京: 高等教育出版社, 2008: 53–54.
[19]   唐敏康 电除尘器中亚微粒子凝并机理的研究[J]. 工业安全与防尘, 1995, (06): 1- 5
TANG Min-kang Study on the mechanism of submicron particle coagulation in electrostatic precipitator[J]. Industrial Safety and Dust Control, 1995, (06): 1- 5
[20]   VOLK M, MOROZ W J Sonic agglomeration of aerosol particles[J]. Water Air and Soil Pollution, 1976, 5 (3): 319- 334
[21]   ZHOU D, LUO Z, JIANG J, et al Experimental study on improving the efficiency of dust removers by using acoustic agglomeration as pretreatment[J]. Powder Technology, 2016, 289: 52- 59
doi: 10.1016/j.powtec.2015.11.009
[22]   SEVILLE J P K, WILLETT C D, KNIGHT P C Interparticle forces in fluidisation: a review[J]. Powder Technology, 2000, 113 (3): 261- 268
doi: 10.1016/S0032-5910(00)00309-0
[23]   GUTFINGER C Aerosol measurement: principles, techniques, and applications[J]. International Journal of Multiphase Flow, 1993, 22 (22): 807- 808
[24]   NOORPOOR A R, SADIGHZADEH A, HABIBNEJAD H Influence of acoustic waves on deposition and coagulation of fine particles[J]. International Journal of Environmental Research, 2013, 7 (1): 131- 138
[25]   GALLEGO-JUAREZ J A, DE SARABIA E R F, RODRIGUEZ-COEEAL G, et al Application of acoustic agglomeration to reduce fine particle emissions from coal combustion plants[J]. Environmental Science and Technology, 1999, 33 (21): 3843- 3849
doi: 10.1021/es990002n
[26]   MARSHALL J S, LI S. Adhesive particle flow [M]. New York: Cambridge University Press, 2014.
[1] Yu ZHAO,Sheng CHANG,Jian-jing ZHENG,Dao-sheng LING,Teng LIANG. Analysis of raindrop trajectory in centrifuge-simulated hypergravity field[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 491-499.
[2] Xiao PAN,Yun-dan YANG,Xin YAO,Lei WU,Shu-hai WANG. Personalized potential route recommendation based on hidden Markov model[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1736-1745.
[3] Jie LIU,Xian-zhou DONG,Wei HAN,Xin-wei WANG,Chun LIU,Jun JIA. Trajectory planning for carrier aircraft on deck using Newton Symplectic pseudo-spectral method[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1827-1838.
[4] Nan-nan ZHAO,Liang HU,Kai MAO,Wen-yu CHEN,Xin FU. Hybrid determination method for acoustic field of ultrasonic volumetric flowmeter[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1466-1473.
[5] Chuang LIU,Jun LIANG. Vehicle motion trajectory prediction based on attention mechanism[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1156-1163.
[6] Chen-ying ZHOU,Hao ZHOU,Yu-jian XING,Jia-kai ZHANG,Ming-xi ZHOU. Effect of additives on flow characteristics and sodium capture efficiency of high alkali coal ash slag[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 623-630.
[7] Man GUO,Zhen-yu MEI,Li-hui ZHANG. Trajectory optimization of connected and autonomous vehicles to achieve tandem intersection control[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 275-282.
[8] Lei ZHENG,Jun-xing ZHANG. Location-aware privacy protection scheme in continuous location-based service[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2437-2444.
[9] Hai-dong WU,Zhen-li SI. Intelligent vehicle trajectory tracking control based on linear matrix inequality[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 110-117.
[10] Chen-yang PU,Zuo-jun LIU,Shuang PANG,Yan ZHANG. Research and application of iterative learning control with knowledge inheritance[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1340-1348.
[11] Ai-guo WU,Shao-hua WU,Na DONG. Nonsingular fast terminal sliding model fuzzy control of robotic manipulators[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 862-871.
[12] Dan-xiang JING,Jun HAN,Zhi-wei XU,Ying CHEN. Underwater multi-target tracking using imaging sonar[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 753-760.
[13] Er-yong WU,Ye HAN,Li-qiang LI,Shuang DENG,Ke-ji YANG. Ultrasonic array levitation technology for large size plate like components[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2058-2066.
[14] Yong-gang LIN,Jian-qiang XU,Hong-wei LIU,Wei LI. Pressure matching of wave energy device based on digital hydraulic cylinder group[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1892-1897.
[15] ZHOU Chi, LI Ying-hui, ZHENG Wu-ji, WU Peng-wei, DONG Ze-hong. Study on stability region determination and algorithm characteristics of power system[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(1): 200-206.