|
|
Hybrid determination method for acoustic field of ultrasonic volumetric flowmeter |
Nan-nan ZHAO( ),Liang HU,Kai MAO*( ),Wen-yu CHEN,Xin FU |
School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China |
|
|
Abstract Acoustic field distribution in the measuring space of ultrasonic volumetric flowmeter is mainly determined by the performance of the transducer and the flow field under actual conditions. A hybrid approach combining measured boundary conditions and numerical method was used to predict the acoustic field, in order to solve the problem that only using numerical method has the difficulty in accurately modeling important calculation parameters of actual transducer. The vibration boundary condition of calculation model is accurately obtained by using a laser scanning vibrometer to measure vibration velocity of discrete points on transducer surface and following a data fitting computation, which means that the transducer with the most modelling uncertainty is replaced by the experimental data. The flow fields inside the ultrasonic volumetric flowmeter under different volume flowrates were calculated by computational fluid dynamics, and then the simulation results were inserted into the numerical calculation model as the background field. The acoustic field can be predicted by solving the governing equation derived from linear wave acoustic equations in non-uniform flow with the help of the finite element software COMSOL. The proposed hybrid approach is validated by comparing the predicted and experimental data.
|
Received: 15 July 2019
Published: 28 August 2020
|
|
Corresponding Authors:
Kai MAO
E-mail: znifei@zju.edu.cn;maokai@zju.edu.cn
|
超声波体积流量计声场混合计算方法
超声波体积流量计测量空间内声场分布主要由换能器性能和实际工况下的流场共同决定. 在进行相关声场研究时,为了解决仅使用数值法难以对实际换能器重要计算参数进行准确建模的问题,提出联合测量边界条件和数值法的混合计算方法对声场进行求解. 计算模型的振动边界条件通过使用扫描式激光测振仪测量换能器表面离散点的振动速度并对其进行数据拟合来准确获取,实现以实验测量的数据对建模不确定性最大的换能器进行表征. 由计算流体动力学对超声体积流量计在不同体积流量下的流场进行求解,并将获取的流场导入数值计算模型中作为背景流场. 借助有限元软件COMSOL求解由非均匀流中线性声学式推导的控制式对声场进行预测. 比较预测和实验结果,对混合计算方法进行验证.
关键词:
气体超声体积流量计,
换能器,
声场,
流场,
测量边界条件
|
|
[1] |
O'SULLIVANI J, WRIGHT W M Ultrasonic measurement of flow using electrostatic transducers[J]. Ultrasonics, 2002, 40 (1–8): 407- 411
|
|
|
[2] |
LYNNWORTH L C, LIU Y Ultrasonic flowmeters: half-century progress report, 1955–2005[J]. Ultrasonics, 2006, 44 (Suppl ement): 1371- 1378
|
|
|
[3] |
RAJITA G, MANDAL N. Review on transit time ultrasonic flowmeter [C]// 2nd International Conference on Control, Instru-mentation, Energy and Communication (CIEC). Kolkata: IEEE, 2016: 88-92.
|
|
|
[4] |
LYGRE A, VESTRHEIM M, LUNDE P, et al Numerical simulation of ultrasonic flowmeters[J]. Ultrasonics International, 1987, 25 (6): 196- 201
|
|
|
[5] |
BOONE M, VERMAAS E A A new ray-tracing algorithm for arbitrary inhomogeneous and moving media, including caustics[J]. Journal of the Acoustical Society of America, 1991, 90 (4): 2109- 2117
doi: 10.1121/1.401638
|
|
|
[6] |
IOOSS B, LHUILLIER C, JEANNEAU H Numerical simulation of transit-time ultrasonic flowmeters: uncertainties due to flow profile and fluid turbulence[J]. Ultrasonics, 2002, 40 (9): 1009- 1015
doi: 10.1016/S0041-624X(02)00387-6
|
|
|
[7] |
KUPNIK M, O'LEARY P, SCHRODER A, et al. Numerical simulation of ultrasonic transit-time flowmeter performance in high temperature gas flows [C] // IEEE Symposium on Ultrasonics. Honolulu: IEEE, 2004: 1354-1359.
|
|
|
[8] |
ZHENG D, MEI J, WANG M Improvement of gas ultrasonic flowmeter measurement nonlinearity based on ray tracing method[J]. Iet Science Measurement and Technology, 2016, 10 (6): 602- 606
doi: 10.1049/iet-smt.2015.0310
|
|
|
[9] |
郑丹丹, 王蜜, 孙彦招 速度分布对气体超声体积流量计声传播规律的影响[J]. 天津大学学报: 自然科学与工程技术版, 2017, 50 (11): 1169- 1175 ZHENG Dan-dan, WANG Mi, SUN Yan-zhao Effect of velocity distribution on acoustic propagation of gas ultrasonic flowmeter[J]. Journal of Tianjin University: Science and Technology, 2017, 50 (11): 1169- 1175
|
|
|
[10] |
HUGHES T J R The finite element method: linear static and dynamic finite element analysis[J]. Religion, 2003, 6 (2): 222
|
|
|
[11] |
LERCH R Simulation of piezoelectric devices by two- and three-dimensional finite elements[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 1990, 37 (3): 233- 247
doi: 10.1109/58.55314
|
|
|
[12] |
WOJCIK G L, VAUGHAN D K, ABBOUD N, et al. Electrome-chanical modeling using explicit time-domain finite elements [C] // Proceedings of the IEEE Ultrasonics Symposium. Baltimore: IEEE, 1993: 1107-1112.
|
|
|
[13] |
ECCARDT P C, LANDES H, LERCH R Applications of finite element simulations to acoustic wave propagation within flowing media[J]. International Journal of Computer Applications in Technology, 1998, 11 (3): 163- 169
|
|
|
[14] |
PIERCE, ALLAN D Wave equation for sound in fluids with unsteady inhomogeneous flow[J]. The Journal of the Acoustical Society of America, 1990, 87 (6): 2292
doi: 10.1121/1.399073
|
|
|
[15] |
LUCA A, MARCHIANO R, CHASSAING J C Numerical simulation of transit-time ultrasonic flowmeters by a direct approach[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2016, 63 (6): 886- 897
|
|
|
[16] |
孙伟, 胡文祥. 热黏滞效应对振膜-微声腔耦合系统的影响[C]// 上海-西安声学学会第四届声学学术交流会. 常州: 《声学技术》编辑部, 2015: 22-26. SUN Wei, HU Wen-xiang. Influence of viscothermal effects on coupling system of membrane-micro acoustic cavity [C]// 4th Symposium on Acoustics of Shanghai-Xi'an Acoustic Society. Changzhou: Editorial Department of Acoustic Technology, 2015: 22-26.
|
|
|
[17] |
张海澜. 理论声学[M]. 北京: 高等教育出版社, 2012.
|
|
|
[18] |
ASTLEY R J, EVERSMAN W Wave envelope and infinite element schemes for fan noise radiation from turbofan inlets[J]. AIAA Journal, 1984, 22 (12): 1719- 1726
doi: 10.2514/3.8843
|
|
|
[19] |
MYERS M K On the acoustic boundary condition in the presence of flow[J]. Journal of Sound and Vibration, 1980, 71 (3): 429- 434
doi: 10.1016/0022-460X(80)90424-1
|
|
|
[20] |
何祚镛, 赵玉芳. 声学理论基础[M]. 北京: 国防工业出版社, 1981.
|
|
|
[21] |
QIN L H, TANG Z Y, HU L, et al Numerical Analysis of transducer installation effect on ultrasonic gas flow meter[J]. Applied Mechanics and Materials, 2014, 687?691: 1019- 1025
doi: 10.4028/www.scientific.net/AMM.687-691.1019
|
|
|
[22] |
International Organization of Legal Metrology. Gas meters: Part 1: metrological and technical requirements document rec: OIML R 137-1 I [S]. Paris: International Organization of Legal Metrology, 2006.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|