Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (6): 1191-1198    DOI: 10.3785/j.issn.1008-973X.2022.06.017
    
Droplet rebound and central jet after impacting hydrophilic tubular surface
Kai-min WANG(),Yu-jie ZHANG,Pei-sen KANG,Hong-sheng LIU,Xiao-hua LIU*()
School of Energy and Power Engineering, Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China
Download: HTML     PDF(1575KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The dynamic characteristics of water droplet impacting a hydrophilic tubular surface were recorded by a high-speed camera, the droplet rebound and central jet were studied under different impact velocities (Weber number) and surface temperatures. The droplet can rebound after impacting a heated hydrophilic tubular surface, while not for a hydrophilic tubular surface of room temperature. The curvature ratio (the ratio of droplet diameter to tube outer diameter) was 0.15, impact velocity ranged from 0.47 to 1.40 m/s, and the surface temperature ranged from 20 to 305 ℃, three rebound forms were observed: “retraction-rebound” “spread-rebound” and “splash-rebound”, the formation conditions of which were summarized. The surface temperature determines whether droplet can rebound or not, it, as well as Weber number can influence the formation of “splash-rebound” significantly. The formation of a fast “spread-rebound” was analyzed from the gravity, inertial force, and gasification reaction force. The formation of central jet was analyzed, the increase in the surface temperature and Weber number were beneficial to the occurrence of the incomplete central jet.



Key wordsdroplet impact      heated tubular surface      impact velocity      central jet      droplet rebound     
Received: 01 August 2021      Published: 30 June 2022
CLC:  O 359  
Fund:  辽宁省中央引导地方科技发展专项项目(2021JH6/10500150);国家自然科学基金资助项目(51476017,51576029)
Corresponding Authors: Xiao-hua LIU     E-mail: kmwang_9410@mail.dlut.edu.cn;lxh723@dlut.edu.cn
Cite this article:

Kai-min WANG,Yu-jie ZHANG,Pei-sen KANG,Hong-sheng LIU,Xiao-hua LIU. Droplet rebound and central jet after impacting hydrophilic tubular surface. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1191-1198.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.06.017     OR     https://www.zjujournals.com/eng/Y2022/V56/I6/1191


液滴撞击加热亲水管壁后的反弹和中心射流

采用高速摄像机拍摄水滴撞击加热亲水管壁的动态过程,研究在不同撞击速度(韦伯数)和壁面温度下,液滴撞击后出现的液膜反弹和中心射流现象. 不同于液滴撞击常温亲水管壁,液滴撞击加热亲水管壁后会反弹. 在曲率比(液滴直径与管外壁直径的比值)为0.15,撞击速度为0.47~1.40 m/s,壁面温度为20~305 ℃的条件下,观测到“回缩?反弹”“铺展?反弹”和“破碎?反弹”3种反弹形式,总结其发生条件. 壁面温度是决定液滴撞击后能否发生反弹的关键因素,壁面温度和韦伯数均对“破碎?反弹”的产生有显著影响. 从重力、惯性力和气化反作用力角度分析产生快速“铺展?反弹”现象的原因. 分析中心射流形成原因,发现增加壁面温度和韦伯数有利于不完全中心射流的形成.


关键词: 液滴撞击,  加热管壁,  撞击速度,  中心射流,  液膜反弹 
Fig.1 Schematic of experimental setup for droplet impacting heated tubular surface
Fig.2 Physical schematic diagram of droplet impacting tubular surface
Fig.3 Dynamic characteristics of droplet impacting heated hydrophilic tubular surface with different initial impingement velocities (θW = 260 ℃ )
Fig.4 Liquid rebound under different Weber number and heated tubular surface temperature
Fig.5 Dynamic characteristics of droplet impacting heated hydrophilic tubular surface with different heated tubular surface temperature (We = 31.0)
Fig.6 Enlarged view of central jet (v0 = 1.40 m/s, θW = 260 ℃)
Fig.7 Incomplete central jet (v0 = 1.24 m/s, θW = 260 ℃ )
Fig.8 Central jet under different weber number and heated tubular surface temperature
[1]   LIU X H, WANG K M, FANG Y Q, et al Study of the surface wettability effect on dynamic characteristics of droplet impacting a tube with different curvature ratios[J]. Experimental Thermal and Fluid Science, 2020, 115: 110060
doi: 10.1016/j.expthermflusci.2020.110060
[2]   胡定华, 刘诗雨 Al2O3纳米流体液滴撞击壁面的动力学行为数值研究 [J]. 浙江大学学报:工学版, 2021, 55 (5): 991- 998
HU Ding-hua, LIU Shi-yu Numerical study on dynamic behaviors of Al2O3 nanofluid droplet impacting on solid wall [J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (5): 991- 998
[3]   NEGEED E R, ISHIHARA N, TAGASHIRA K, et al Experimental study on the effect of surface conditions on evaporation of sprayed liquid droplet[J]. International Journal of Thermal Sciences, 2010, 49 (12): 2250- 2271
doi: 10.1016/j.ijthermalsci.2010.08.008
[4]   MITRA S, SATHE M J, DOROODCHI E, et al Droplet impact dynamics on a spherical particle[J]. Chemical Engineering Science, 2013, 100: 105- 119
doi: 10.1016/j.ces.2013.01.037
[5]   RIBOUX G AND GORDILLO J. Experiments of drops impacting a smooth solid surface: a model of the critical impact speed for drop splashing[J]. Physical Review Letters, 2014, 113: 024507
doi: 10.1103/PhysRevLett.113.024507
[6]   汪焰恩, 周金华, 秦琰磊, 等 液滴撞击固体球面行为特性的数值研究[J]. 振动与冲击, 2012, 31 (20): 51- 55
WANG Yan-en, ZHOU Jin-hua, QIN Yan-lei, et al Numerical simulation for behavior of a droplet impacting onto a target spherical surface[J]. Journal of Vibration and Shock, 2012, 31 (20): 51- 55
[7]   杜敏, 宋亮, 孙文涛, 等 液滴与球形颗粒相互碰撞的数值模拟[J]. 江苏大学学报:自然科学版, 2021, 42 (3): 284- 290
DU Min, SONG Liang, SUN Wen-tao, et al Numerical simulation of a droplet colliding with a spherical particle[J]. Journal of Jiangsu University: Natural Science Edition, 2021, 42 (3): 284- 290
[8]   LIU X H, WANG K M, FANG Y Q, et al Study of the effect of surface wettability on droplet impact on spherical surfaces[J]. International Journal of Low-Carbon Technologies, 2020, 15 (3): 414- 420
doi: 10.1093/ijlct/ctz077
[9]   李栋, 王鑫, 高尚文, 等 单液滴撞击超疏水冷表面的反弹及破碎行为[J]. 化工学报, 2017, 68 (6): 2473- 2482
LI Dong, WANG Xin, GAO Shang-wen, et al Rebounding and splashing behavior of single water droplet impacting on cold superhydrophobic surface[J]. CIESC Journal, 2017, 68 (6): 2473- 2482
[10]   WANG K M, CHEN H, GE H Y, et al Study of impact velocity and curvature ratio on the dynamic characteristics of double droplets impacting super-hydrophobic tubes[J]. Physics of Fluids, 2021, 33: 013301
doi: 10.1063/5.0035624
[11]   代超, 纪献兵, 周冬冬, 等 液滴碰撞不同湿润性表面的行为特征[J]. 浙江大学学报:工学版, 2018, 52 (1): 36- 42
DAI Chao, JI Xian-bing, ZHOU Dong-dong, et al Behavioral characteristics of droplet collision to different wettability surfaces[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (1): 36- 42
[12]   WANG K M, LIU X H, CHEN H, et al Droplet ejection after impacting a hydrophobic flat surface at different impact velocities[J]. Interfacial Phenomena and Heat Transfer, 2020, 8 (2): 107- 115
doi: 10.1615/InterfacPhenomHeatTransfer.2020033904
[13]   付清腾, 郭飞, 刘晓华 采用加湿除湿技术处理浓盐水的实验研究[J]. 浙江大学学报:工学版, 2019, 53 (11): 2231- 2237
FU Qing-teng, GUO Fei, LIU Xiao-hua Experimental study of high salinity water treatment by humidification-dehumidification technology[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (11): 2231- 2237
[14]   梁超, 王宏, 朱恂, 等 液滴撞击不同浸润性壁面动态过程的数值模拟[J]. 化工学报, 2013, 64 (8): 2745- 2751
LIANG Chao, WANG Hong, ZHU Xun, et al Numerical simulation of droplet impact on surfaces with different wettabilities[J]. CIESC Journal, 2013, 64 (8): 2745- 2751
[15]   梁刚涛, 郭亚丽, 沈胜强 液滴低速撞击润湿球面现象观测分析[J]. 物理学报, 2013, 62 (18): 184703
LIANG Gang-tao, GUO Ya-li, SHEN Sheng-qiang Observation and analysis of drop impact on wetted spherical surfaces with low velocity[J]. Acta Physica Sinica, 2013, 62 (18): 184703
doi: 10.7498/aps.62.184703
[16]   BLACK K, BERTOLA V. Drop impact morphology on heated surfaces [C]// DIPSI Workshop 2012 on Droplet Impact Phenomena and Spray Investigation, Bergamo: [s.n.], 2012: 1–5.
[17]   韩毅, 赵增武, 张亚竹, 等 液滴流撞击热金属表面铺展行为实验研究[J]. 铸造技术, 2016, 37 (12): 2624- 2628
HAN Yi, ZHAO Zeng-wu, ZHANG Ya-zhu, et al Experimental study on spreading behavior of droplets stream impacting hot metal surface[J]. Foundry Technology, 2016, 37 (12): 2624- 2628
[18]   荣松, 沈世全, 王天友, 等 液滴撞击加热壁面雾化弹起模式及驻留时间[J]. 物理学报, 2019, 68 (15): 154701
RONG Song, SHEN Shi-quan, WANG Tian-you, et al Bouncing-with-spray mode and residence time of droplet impact on heated surfaces[J]. Acta Physica Sinica, 2019, 68 (15): 154701
doi: 10.7498/aps.68.20190097
[19]   梁刚涛, 牟兴森, 郭亚丽, 等 液滴冲击加热壁面沸腾现象特征分析[J]. 化工学报, 2016, 67 (6): 2211- 2217
LIANG Gang-tao, MU Xing-sen, GUO Ya-li, et al Characteristic analyses of boiling phenomena in process of drops impingement on heated surfaces[J]. CIESC Journal, 2016, 67 (6): 2211- 2217
[20]   ZHANG H X, ZHANG X W, YI X, et al Asymmetric splash and breakup of drops impacting on cylindrical superhydrophobic surfaces[J]. Physics of Fluids, 2020, 32: 122108
doi: 10.1063/5.0032910
[21]   孙炎俊, 赵丹阳 液滴撞击高温曲面动力学特性试验研究[J]. 表面工程与再制造, 2018, 18 (2): 28- 32
SUN Yan-jun, ZHAO Dan-yang Experimental study on dynamic characteristics of droplet impact on high temperature tubular surface[J]. Surface Engineering and Remanufacturing, 2018, 18 (2): 28- 32
doi: 10.3969/j.issn.1672-3732.2018.02.013
[22]   宋锋毅, 郭亚丽, 王峰, 等 液滴撞击圆柱外表面蒸发换热的数值模拟[J]. 哈尔滨工业大学学报, 2018, 50 (1): 114- 120
SONG Feng-yi, GUO Ya-li, WANG Feng, et al Numerical simulation of evaporation and heat transfer of droplet impacting on cylindrical outer surface[J]. Journal of Harbin Institute of Technology, 2018, 50 (1): 114- 120
doi: 10.11918/j.issn.0367-6234.201704051
[23]   沈胜强, 张洁珊, 梁刚涛 液滴撞击加热壁面传热实验研究[J]. 物理学报, 2015, 64 (13): 134704
SHEN Sheng-qiang, ZHANG Jie-shan, LIANG Gang-tao Experimental study of heat transfer from droplet impact on a heated surface[J]. Acta Physica Sinica, 2015, 64 (13): 134704
doi: 10.7498/aps.64.134704
[24]   GE Y, FAN L S Droplet–particle collision mechanics with film-boiling evaporation[J]. Journal of Fluid Mechanics, 2007, 573: 311- 337
doi: 10.1017/S0022112006003922
[25]   MITRA S, NGUYEN T B T, DOROODCHI E, et al On wetting characteristics of droplet on a spherical particle in film boiling regime[J]. Chemical Engineering Science, 2016, 149: 181- 203
doi: 10.1016/j.ces.2016.04.003
[26]   唐鹏博, 王关晴, 王路, 等 单液滴正碰球面动态行为特性实验研究[J]. 物理学报, 2020, 69 (2): 024702
TANG Peng-bo, WANG Guan-qing, WANG Lu, et al Experimental investigation on dynamic behavior of single droplet impcating normally on dry sphere[J]. Acta Physica Sinica, 2020, 69 (2): 024702
doi: 10.7498/aps.69.20191141
[27]   施明恒 运动液滴的LEIDENFROST现象[J]. 南京工学院学报, 1985, 3: 83- 88
SHI Ming-heng The Leidenfrost temperature of a falling liquid droplet[J]. Journal of Nanjing Institute of Technology, 1985, 3: 83- 88
[28]   LIANG G T, ZHANG T Y, CHEN L Z, et al Single-phase heat transfer of multi-droplet impact on liquid film[J]. International Journal of Heat and Mass Transfer, 2019, 132: 288- 292
doi: 10.1016/j.ijheatmasstransfer.2018.11.145
[29]   COSSALI G E, MARENGO M, SANTINI M Thermally induced secondary drop atomisation by single drop impact onto heated surfaces[J]. International Journal of Heat and Fluid Flow, 2008, 29 (1): 167- 177
doi: 10.1016/j.ijheatfluidflow.2007.09.006
[30]   BREITENBACH J, KISSING J, ROISMAN I V, et al Characterization of secondary droplets during thermal atomization regime[J]. Experimental Thermal and Fluid Science, 2018, 98: 516- 522
doi: 10.1016/j.expthermflusci.2018.06.030
[1] Yu-qi HUANG,Zhuo-lie CHEN,Jun-qiang HU,Mei LI,Hao-yi NIU. Visual simulation of two-phase flow oscillating flow in piston cooling gallery[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 435-441.
[2] Shuai ZHENG,Da-peng TAN,Lin LI,Yin-long ZHU. Ultrasonic coupled microreactor CFD-DEM dynamic modeling and regulating method[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1237-1251.
[3] Zhan-hao HU,Jun-tao FENG,De-ren SHENG,Jian-hong CHEN,Wei LI. Numerical simulation for vibration of interferometric probein wet steam flow field[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1157-1163.
[4] SHA Dong hui, LUO Zhong yang, LU Meng shi, JIANG Jian ping, FANG Meng xiang, ZHOU Dong, CHEN Hao. Electrostatic agglomeration of positively charged particles observed by microscopic visualization system[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(1): 93-101.
[5] JIANG Jian ping, LUO Zhong yang, CHEN Hao, ZHOU Dong, SHA Dong hui, FANG Meng xiang, CEN Ke fa. Comparison of two conventional characterization methods of particle diameter[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(12): 2326-2332.
[6] TAN Chao, WEI Zheng-ying, HU Fu-sheng, LI Ben-qiang, HAN Zhi-hai. Numerical analysis and experimental study of atmospheric plasma spray process[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(12): 2284-2292.
[7] JI Shi-ming, ZENG Xi, JIN Ming-sheng, TAN Da-peng. Processing characteristics of pneumatic wheel based on modified Preston equation[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(7): 1299-1306.
[8] JI Shi-ming, LI Chen, TAN Da-peng, ZHANG Li, FU You-zhi, WANG Ying-chun. Softness abrasive flow machining and characteristics of near wall area[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(10): 1764-1772.
[9] DU Jun, WEI Zheng-ying, XIONG Xiao-dong, HE Wei, TANG Yi-ping. Effects of mold geometries and initial thickness
on resist filling characteristics in UV-NIL
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(7): 1175-1181.
[10] LUO Kun, JIN Tai, FAN Jian-ren, CEN Ke-fa. Effects of mesh size on droplet evaporation[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(12): 2176-2180.
[11] JI Shi-ming, WENG Xiao-xing, TAN Da-peng. Analysis on characteristics of softness abrasive two-phase flow field
based on level set method
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(12): 2222-2228.
[12] NIE De-Meng, LIN Jian-Zhong. Lattice Boltzmann model for particle Brownian motion[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(8): 1438-1442.