Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (3): 435-441    DOI: 10.3785/j.issn.1008-973X.2020.03.002
Mechanical Engineering     
Visual simulation of two-phase flow oscillating flow in piston cooling gallery
Yu-qi HUANG1(),Zhuo-lie CHEN1,Jun-qiang HU2,*(),Mei LI2,Hao-yi NIU1
1. Power Machinery Vehicular Engineer Institute, Zhejiang University, Hangzhou 310058, China
2. Shanghai Marine Diesel Engine Research Institute, Shanghai 201108, China
Download: HTML     PDF(1579KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The experimental platform for two-phase flow oscillating flow visualization experiment was designed and established, by using 3D printing technology to restore the cooling gallery in a certain type of diesel engine piston. For the two different cooling media, glycerin aqueous solution and soybean oil, oil output data was collected and the oil pass rate was calculated while the flow field images were taken visually. The oil data was collected and the pass rate was calculated while taking visual image of flow field for two different fluid medium. Results show that the proposed test method can abandon the spray splash interference, collect the oil output data, obtain a clear and identifiable visual image. The photographic results were compared and analyzed, and the flow patterns of two-phase flow oscillating flow were identified and classified. As results, when the Reynolds number is above 20 000, the flow state of the two-phase flow oscillating flow changes significantly and enter strong turbulent state.



Key wordstwo-phase flow oscillating      simulated cooling gallery      visual experiment      flow pattern analysis      Reynolds number     
Received: 29 January 2019      Published: 05 March 2020
CLC:  O 359  
Corresponding Authors: Jun-qiang HU     E-mail: huangyuqi@zju.edu.cn;hujunqiang@csic711.com
Cite this article:

Yu-qi HUANG,Zhuo-lie CHEN,Jun-qiang HU,Mei LI,Hao-yi NIU. Visual simulation of two-phase flow oscillating flow in piston cooling gallery. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 435-441.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.03.002     OR     http://www.zjujournals.com/eng/Y2020/V54/I3/435


活塞内冷油腔两相流振荡可视化模拟

设计并搭建一个活塞振荡两相流可视化模拟试验台,利用3D打印技术还原某型号柴油机的活塞内冷油腔,针对甘油水溶液以及大豆油2种不同的冷却介质,在可视化拍摄流场图像的同时,收集出油数据并计算通过率. 研究发现,所采用的试验方法可摒弃喷油飞溅干扰,准确采集出油量数据,获得了清晰可辨的可视化图像. 将拍摄结果进行对比分析,并对两相流振荡的流型进行辨识和分类,发现当雷诺数达到20 000以上时,两相流振荡的流动状态会发生明显变化,流动进入强湍流状态.


关键词: 两相流振荡,  模拟油腔,  可视化试验,  流型分析,  雷诺数 
Fig.1 3D model of piston cooling gallery and installation method of test pieces
Fig.2 Schematic diagram of two-phase flow oscillation visualization experimental platform
Fig.3 3D model of fuel injection nozzle
冷却介质 $\rho $/(kg·m?3 $\nu $/(N·s·m?2
甘油水溶液 1 260 0.016 8
大豆油 920 0.068 5
Tab.1 Physical parameters of cooling medium
Fig.4 Flow patterns of glycerol aqueous of BDC piston cooling gallery at different rotation speeds with injection flow rate of 0.015 kg/s
Fig.5 Flow patterns of glycerol aqueous of piston cooling gallery at different crank angles and different rotation speeds with injection flow rate of 0.025 kg/s
序号 N/(r·min?1) $V$/mL ${t_0}$/s ${Q_{{\rm{out}}}}$/(mL·s?1) $\phi $/% $\overline \phi $/%
1 200 302 1.74 17.48 89.62 91.49
2 264 17.32 88.81
3 298 18.73 96.05
4 300 240 1.45 15.82 81.12 82.83
5 254 15.87 81.38
6 236 16.77 86.00
7 400 230 1.07 15.88 81.44 79.42
8 218 14.38 73.74
9 247 16.20 83.08
10 500 202 0 11.78 59.94 52.77
11 220 10.06 51.59
12 228 9.12 46.79
13 600 184 0 9.32 47.82 43.69
14 187 8.46 43.37
15 178 7.78 39.89
Tab.2 Test data of glycerol aqueous solution with flow rate of 0.025 kg/s
Fig.6 Comparison of pass rate of glycerin aqueous solution and soybean oil
Fig.7 Flow patterns of soybean oil when piston cooling gallery is at TDC and BDC at different rotation speeds with pump pressure of 0.5 MPa
N/(r·min?1) v/(m·s?1) Re
甘油水溶液 大豆油 实机机油
200 2.31 10 568 1 893 7 129
300 3.46 15 830 2 835 10 679
400 4.62 21 137 3 785 14 259
500 5.77 26 398 4 727 17 808
600 6.93 31 704 5 678 21 388
1 858 20.78 64 134
Tab.3 Reynolds number of glycerin aqueous solution,soybean oil and engine oil at different rotation speeds
N/(r·min?1 $Re$ N/(r·min?1 $Re$
400 14 042 800 28 085
500 17 553 900 31 595
600 21 063 1 000 35 106
700 24 574 ? ?
Tab.4 Reynolds number of straight piston gallery experiment at different rotation speeds
Fig.8 Reynolds number and flow patterns correspondence table
[1]   DWORSCHAK J, FELTES R, FORTNER T, et al BMW公司装用3个涡轮增压器的新型6缸两级增压柴油机(第2部分)一进气系统、冷却系统和废气系统[J]. 国外内燃机, 2014, 46 (1): 13- 16
DWORSCHAK J, FELTES R, FORTNER T, et al BMW's new 6-cylinder two-stage supercharged diesel engine with 3 turbochargers (Part 2)-Intake system, cooling system and exhaust system[J]. Foreign Internal Combustion Engine, 2014, 46 (1): 13- 16
[2]   张卫正, 曹元福, 原彦鹏, 等 基于CFD的活塞振荡冷却的流动与传热仿真研究[J]. 内燃机学报, 2010, 28 (1): 74- 78
ZHANG Wei-zheng, CAO Yuan-fu, YUAN Yan-peng Simulation study of flow and heat transfer in oscillating cooling pistons based on CFD[J]. Transactions of CSICE, 2010, 28 (1): 74- 78
[3]   KAJIWARA H, FUJIOKA Y, NEGISHI H. Prediction of temperatures on pistons with cooling gallery in diesel engines using CFD tool [C] // SAE 2003 World Congress and Exhibition. [S.l.]: SAE, 2003.
[4]   LIU H, BAI M L, LV J Z, et al Heat transfer analysis of piston cooling using nanofluids in the gallery[J]. Micro and Nano Letters, 2015, 10 (1): 28- 33
[5]   TORREGROSA A J, BROATCH A, OLMEDA P, et al A contribution to film coefficient estimation in piston cooling galleries[J]. Experimental Thermal and Fluid Science, 2010, 34 (2): 142- 151
doi: 10.1016/j.expthermflusci.2009.10.003
[6]   KIRMSE C J W, OYEWUMI O A, TALEB A I, et al A two-phase single-reciprocating-piston heat conversion engine: non-linear dynamic modelling[J]. Applied Energy, 2017, 186 (part 3): 359- 375
[7]   曹元福, 张卫正, 杨振宇, 等 封闭空腔中多相流振荡传热特性的数值模拟[J]. 化工学报, 2013, 64 (3): 891- 896
CAO Yuan-fu, ZHANG Wei-zheng, YANG Zhen-yu, et al Numerical simulation of oscillating heat transfer characteristics in cavity partly filled with cooling liquid[J]. CIESC Journal, 2013, 64 (3): 891- 896
doi: 10.3969/j.issn.0438-1157.2013.03.015
[8]   LUFF D C, LAW T, SHAYLER P J The effect of piston cooling jets on diesel engine piston temperatures, emission and fuel consumption[J]. SAE Technical Papers, 2012, 5 (3): 1300- 1311
[9]   HERON S D. History of sodium-cooled piston development[R]. Richmond: Ethyl Corporation Report ERM, 1958.
[10]   BUSH J E, LONDON A L Design data for "cocktail shaker" cooled pistons and valves[J]. SAE Transactions, 1966, 446- 459
[11]   FU W S, LIAN S H, HAO L Y An investigation of heat transfer of a reciprocating piston[J]. International Journal of Heat and Mass Transfer, 2006, 49 (23): 4360- 4371
[12]   谭建松, 俞小莉 高强化发动机活塞冷却方式仿真[J]. 兵工学报, 2006, 27 (1): 97- 100
TAN Jian-song, YU Xiao-li The simulation for cooling method of piston in high-duty engine[J]. Acta Armamentarii, 2006, 27 (1): 97- 100
doi: 10.3321/j.issn:1000-1093.2006.01.022
[13]   邓晰文, 雷基林, 文均, 等 柴油机活塞二阶运动对内冷油腔机油振荡流动与传热的影响[J]. 农业工程学报, 2017, 33 (14): 85- 92
DENG Xi-wen, LEI Ji-lin, WEN Jun, et al Study on oscillating flow and heat transfer characteristics of the cooling gallery inside pistons of a diesel engine[J]. Transactions of the Chinese Society of Agricultural, 2017, 33 (14): 85- 92
doi: 10.11975/j.issn.1002-6819.2017.14.012
[14]   DENG X W, LEI J L, WEN J, et al Numerical investigation on the oscillating flow and uneven heat transfer processes of the cooling oil inside a piston gallery[J]. Applied Thermal Engineering, 2017, 126: 139- 150
doi: 10.1016/j.applthermaleng.2017.07.146
[15]   DENG X W, LEI J L, WEN J, et al Multi-objective optimization of cooling galleries inside pistons of a diesel engine[J]. Applied Thermal Engineering, 2018, 132: 441- 449
doi: 10.1016/j.applthermaleng.2017.12.125
[16]   邓立君. 内燃机活塞内冷油腔内两相流的流动与换热机理研究[D]. 山东: 山东大学, 2017.
DENG Li-jun. Study on flow and heat transfer mechanism of two-phase flow in oil cooling gallery of internal combustion engine[D]. Shandong: Shandong university, 2017.
[17]   耿泽伟. 高强化活塞内冷油腔振荡冷却效果研究[D]. 河北: 河北科技大学, 2018.
GENG Ze-wei. Study on oscillating cooling effect of high intensified piston inner cooling cavity[D]. Hebei: Hebei University of Science and Technology, 2018.
[18]   WANG P, HAN K H, YOON S, et al The gas-liquid two-phase flow in reciprocating enclosure with piston cooling gallery application[J]. International Journal of Thermal Sciences, 2018, 129: 73- 82
doi: 10.1016/j.ijthermalsci.2018.02.028
[19]   黄泽辉. 活塞振荡油腔换热边界条件的试验研究[D]. 山东: 山东大学, 2015.
HUANG Ze-hui. Experimental study on the heat transfer boundary conditions of the piston cooling oil chamber [D]. Shandong: Shandong University, 2015.
[20]   车得福, 李会雄. 多相流及其应用[M]. 西安: 西安交通大学出版社, 2007.
[1] HAN Yun-dong, YAO Song. Scale effect analysis in aerodynamic performance of high-speed train[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(12): 2383-2391.
[2] SHEN Guo-hui, XIANG Guo-tong, XING Yue-long, GUO Yong, SUN Bing-nan. Experimental investigation of steel latticed towers with cylindrical members based on force balance tests under two wind flows[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(4): 704-710.
[3] TANG Ke, ZHANG Yu, TANG Wen-tao, JIN Tao. Transverse phase profile characteristics of oscillatory pipe flow[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(4): 604-609.