Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (6): 1157-1163    DOI: 10.3785/j.issn.1008-973X.2019.06.015
Mechanical and Energy Engineering     
Numerical simulation for vibration of interferometric probein wet steam flow field
Zhan-hao HU(),Jun-tao FENG,De-ren SHENG*(),Jian-hong CHEN,Wei LI
Institute of Thermal Science and Power System,Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(1322KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The bidirectional fluid solid coupling technique was adopted to analyze the three-element flow problem that the interferometric probe interacts with the wet steam flow field at the end stage of the steam turbine. The vibration characteristics and stress of the probe under wet steam flow field were studied. The fluid solid coupling model was built by using Workbench platform. The k-ω model based on turbulent shear stress transport was used to improve calculation accuracy. Results show that the vibration period of the three directions X, Y and Z of probe fluctuate slightly. The oscillation amplitudes in directions X, Y and Z were 0.28 mm, 4.75 μm and 5.50 μm, respectively. Due to the special structure of the optical probe, the pressure differential force acting on the tip of the probe is very small, leading to a decrease in the growth rate of the shape variable at the front end. During probe vibration, the maximum stress position of the probe is about 2/3 of the point in the direction of back flow of the probe, the maximum stress is far below the allowable stress of the probe material, and the resonance effect is not induced in the calculation condition.



Key wordsinterferometric probe      two-phase wet steam flow field      vibration characteristics      bidirectional fluid solid coupling technique      numerical analysis     
Received: 10 April 2018      Published: 22 May 2019
CLC:  O 359  
  TK 14  
Corresponding Authors: De-ren SHENG     E-mail: 21727038@zju.edu.cn;shengdr@zju.edu.cn
Cite this article:

Zhan-hao HU,Jun-tao FENG,De-ren SHENG,Jian-hong CHEN,Wei LI. Numerical simulation for vibration of interferometric probein wet steam flow field. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1157-1163.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.06.015     OR     http://www.zjujournals.com/eng/Y2019/V53/I6/1157


湿蒸汽流场下介入式探针振动数值模拟

介入式探针在汽轮机末级与湿蒸汽流场相互影响,采用双向流固耦合技术对该三元流动问题进行数值分析,研究探针在湿蒸汽流场下的受力情况和振动特性. 利用Workbench平台搭建流固耦合模型,采用基于湍流剪应力输运的k-ω模型以提高计算精度. 计算结果表明:探针在XYZ方向的振动周期略有波动,最大振幅分别为0.28 mm、4.75和5.50 μm. 由于光学探针结构特殊,探针前端测量区域受到压差作用力很小,前端的形变量增长率有所降低. 在振动过程中,探针背流方向约2/3探针长度处应力值最大,该值远低于探针材料的许用应力,且在计算工况下不会引发共振效应.


关键词: 介入式探针,  湿蒸汽两相流场,  振动特性,  双向流固耦合技术,  数值分析 
Fig.1 Flow chart of bidirectional flow solid couplingnumerical calculation
Fig.2 Distribution diagram of probe internal components
Fig.3 Geometric model of probe and surrounding flow field
Fig.4 Flow field structured meshes with local meshes densification
Fig.5 Stress field on surface of probe on steady statecalculation
Fig.6 Velocity field of fluid near probe on steady state calculation
Fig.7 Relationship between maximum pressure on probesurface and number of mesh nodes
Fig.8 Turbulent wake form with Reynolds number ofabout 30 000
Fig.9 Flow field diagram around probe of steady statecalculation
Fig.10 Location of monitoring point used for monitor probe vibration
Fig.11 Displacement-time curve of probe in three directions
Fig.12 Probe vibration deformation cloud picture
Fig.13 Pressure cloud picture of flow field around centralsection of probe
Fig.14 Pressure cloud picture of flow field around measurement section of probe
Fig.15 Probe’s stress cloud picture on XZ plane at maximum stress
Fig.16 Stress of probe’s maximum stress position within one vibration period
[1]   WHITE A J, YOUNG J B, WALTERS P T Experimental validation of condensing flow theory for a stationary cascade of steam turbine blades[J]. Proceedings of the Royal Society A, 1996, 354 (1704): 59- 88
doi: 10.1098/rsta.1996.0003
[2]   HUANG L X, YOUNG J B An analytical solution for the Wilson point in homogeneously nucleating flows[J]. Proceedings of the Royal Society A, 1996, 452 (1949): 1459- 1473
doi: 10.1098/rspa.1996.0074
[3]   BAKHTAR F, EBRAHIMI M, WEBB R A On the performance of a cascade of turbine rotor tip section blading in nucleating steam: I: surface pressure distributions[J]. Proceedings of the Institution of Mechanical Engineers.part C.mechanical Engineering Science, 1995, 204 (33): 169- 177
[4]   韩中合, 陈柏旺, 刘刚, 等 湿蒸汽两相凝结流动中水滴生长模型研究[J]. 中国电机工程学报, 2011, 31 (29): 79- 84
HAN Zhong-he, CHEN Bai-wang, LIU Gang, et al Droplets growth model in wet steam two-phase condensation flow[J]. Proceedings of the CSEE, 2011, 31 (29): 79- 84
[5]   余兴刚, 谢诞梅, 王纯, 等 汽轮机叶片表面粗糙度对自发凝结级性能影响的数值研究[J]. 中国电机工程学报, 2015, 35 (21): 5533- 5541
YU Xing-gang, XIE Dan-mei, WANG Chun, et al Numerical investigation of the effect of blade roughness on the performance of steam turbine nucleating stage[J]. Proceedings of the CSEE, 2015, 35 (21): 5533- 5541
[6]   黄竹青, 丁涛, 许春山 基于激光的后向角散射法测量蒸汽湿度[J]. 激光与红外, 2016, 46 (1): 21- 27
HUANG Zhu-qing, DING Tao, XU Chun-shan Research on steam humidity measurement by the backward angle scattering[J]. Laser and Infrared, 2016, 46 (1): 21- 27
doi: 10.3969/j.issn.1001-5078.2016.01.004
[7]   KLEITZ A, COURANT J J Probes for industrial particle measurement: application for water droplet sizing in wet steam turbines[J]. Journal of Aerosol Science, 1989, 20 (8): 1477- 1480
doi: 10.1016/0021-8502(89)90866-5
[8]   DOBKES A L, ZILBER T M, KACHURINER Y Y, et al Studying the characteristics of wet steam in turbine flow sections[J]. Thermal Engineering, 1992, 39 (1): 45- 49
[9]   马力, 蔡小舒, 田昌, 等 试验汽轮机内湿蒸汽测量研究[J]. 热力透平, 2012, 41 (2): 97- 105
MA Li, CAI Xiao-shu, TIAN Chang, et al Research on the measurement of wet steam in a test steam turbine[J]. Thermal Turbine, 2012, 41 (2): 97- 105
doi: 10.3969/j.issn.1672-5549.2012.02.003
[10]   黄雪峰, 盛德仁, 陈坚红, 等 布拉格光纤光栅测量湿蒸汽两相流温/湿度的理论数学模型[J]. 中国电机工程学报, 2006, 26 (7): 40- 46
HUANG Xue-feng, SHENG De-ren, CHEN Jian-hong, et al Theoretic mathematics model based on fiber Bragg grating sensor measurement in two-phase wet steam flow temperature/moisture[J]. Proceedings of the CSEE, 2006, 26 (7): 40- 46
doi: 10.3321/j.issn:0258-8013.2006.07.008
[11]   HUANG X F, SHENG D R, CEN K F, et al Low-cost relative humidity sensor based on thermoplastic polyimide-coated fiber bragg grating[J]. Sensors and Actuators B Chemical, 2007, 127 (2): 518- 524
doi: 10.1016/j.snb.2007.05.007
[12]   张晶晶, 王镇宇, 蔡小舒, 等 湿蒸汽联合探针的风洞标定和数值模拟的比较[J]. 工程热物理学报, 2011, 32 (6): 937- 940
ZHANG Jing-jing, WANG Zhen-yu, CAI Xiao-shu, et al Comparison between calibration and numerical simulation of an integrated probe for wet steam measurement[J]. Journal of Engineering Thermophysics, 2011, 32 (6): 937- 940
[13]   BOSDAS I, MANSOUR M, KALFAS A I, et al Unsteady flow field and coarse droplet measurements in the last stage of a low-pressure steam turbine with supersonic airfoils near the blade Tip[J]. Journal of Engineering for Gas Turbines and Power, 2017, 139 (9): 091601
doi: 10.1115/1.4036011
[14]   项延辉, 蔡小舒, 周骛, 等 330MW低压汽轮机湿蒸汽二次水滴测量实验研究[J]. 上海理工大学报, 2017, 39 (3): 223- 228
XIANG Yan-hui, CAI Xiao-shu, ZHOU Wu, et al Experimental research on the coarse water droplets measurement in a 330 MW LP steam turbine[J]. Journal of University of Shanghai for Science and Technology, 2017, 39 (3): 223- 228
[15]   杨荣菲, 赵建通, 向宏辉, 等 进口探针支杆对1.5级压气机气动性能的影响[J]. 推进技术, 2017, 38 (5): 1038- 1046
YANG Rong-fei, ZHAO Jian-tong, XIANG Hong-hui, et al Effects of inlet probe support on aerodynamic performance of 1.5-stage compressor[J]. Journal of Propulsion Technology, 2017, 38 (5): 1038- 1046
[16]   马宏伟, 项乐 探针支杆对压气机转子性能及流场影响的数值模拟研究[J]. 推进技术, 2016, 37 (12): 2288- 2295
MA Hong-wei, XIANG Le Numerical investigation of effects of probe support on performance and flow field of compressor rotor[J]. Journal of Propulsion Technology, 2016, 37 (12): 2288- 2295
[17]   向宏辉, 任铭林, 马宏伟, 等 叶型探针对跨声压气机性能影响的数值模拟[J]. 热能动力工程, 2011, 26 (6): 645- 650
XIANG Hong-hui, REN Ming-lin, MA Hong-wei, et al Numerical simulation of the effect of a leaf probe on the performance of a transonic compressor[J]. Journal of Engineering for Thermal Energy and Power, 2011, 26 (6): 645- 650
[1] Hai-yan DONG,You-peng ZHANG,Shao-yuan LI,Hai-long DONG. Wind tunnel simulation on contamination distribution of cantilever composite insulator with booster sheds[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1563-1571.
[2] ZHANG Li-dong, WEI Qing-wen, WANG Qing. Influence of flights' shape on motion and mixing of binary particles in rotary retort[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(8): 1542-1550.
[3] ZHANG Jun-hong, ZHANG Yu-sheng, WANG Jian, XU Zhe-xuan,HU Huan, ZHAO Yong-huan. Multi-objective optimization design for exhaust manifold considering thermo-mechanical coupling[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(6): 1153-1162.
[4] QIAN Cheng, SHEN Guo-hui, GUO Yong, XING Yue-long. Influence of semi-rigid connections on wind-induced responses of transmission towers[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(6): 1082-1089.
[5] NING Zhi yuan, SHEN Xin jun, LI Shu ran, YAN Ke ping. Numerical analysis of turbulence field and particle trajectory inside wet Electrostatic Precipitator[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(2): 384-392.
[6] CHEN Ren peng, MENG Fan yan, LI Zhong chao, YE Yue hong, HU Qi. Considerable displacement and protective measures for metro tunnels adjacent deep excavation[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(5): 856-863.
[7] YANG Guo lin, DUAN Jun yi, YANG Xiao, XU Ya bin. Vibration characteristics of subgrade in expansive soil area under simulated rainfall and natural conditions[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(12): 2319-2327.
[8] HUANG WEI,WANG Jia xu,XU Tao,XIAO Ke, LI Jun yang,WU Hui chao. Vibration characteristics analysis and experimental research on metal rubber composite gear pair[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(11): 2231-2238.
[9] ZHOU Jia jin, WANG Kui hua, GONG Xiao nan, ZHANG Ri hong,YAN Tian long. Numerical simulation on  behavior of static drill rooted pile under tension[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(11): 2135-2141.
[10] WU You-xia, WANG Zhan, ZHONG Run-hui2, LI Ling-ling, FENG Zhi-hong, WANG Qi. Analysis of interaction between dust break wall piles and soil
subjected to coal loading in soft foundation
[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(3): 502-507.
[11] AI Qing-lin, HUANG Wei-feng, ZU Shun-jiang. Numeric analysis of mechanics of steel band parallel robot
based on screw theory
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(9): 1650-1656.
[12] SHU E-Na, ZHANG Wei, SHEN Yong-Gang. Control measures for preventing crack on the surface
of mass concrete abutment in early stage
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(8): 1621-1628.
[13] XIANG Yi-Jiang, SUN Jun. Dynamic response of bridge approach treated with deep-seated concrete slab[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(10): 1863-1869.